VRIJE Faculty of Science
UNIVERSITEIT Computer Sciences
N° AMSTERDAM

Exploring hypermedia in 2018
through the lens of XIMPEL

Implications on education, parallel media and frustration detection

Master’s thesis in Master Computer Science (Multimedia specialization)

R

Melvin Richy Roest

VRIJE UNIVERSITEIT AMSTERDAM
Faculty of Sciences
Amsterdam, The Netherlands 2018

MASTER’S THESIS 2018

Exploring hypermedia in 2018 through the lens of XIMPEL

Implications on education, parallel media and frustration detection

Melvin Richy Roest

Department of Computer Sciences
Section: Business Web € Media
VRIJE UNIVERSITEIT AMSTERDAM
Amsterdam, The Netherlands 2018

Exploring hypermedia in 2018 through the lens of XIMPEL
Implications on education, parallel media and frustration detection
Melvin Richy Roest

© Melvin Richy Roest, 2018.

Supervisor and 1% reader: Prof. Dr. Anton Eliéns
27d reader: Dr. ing. Sander C.J. Bakkes
Technical Supervision: Msc. Winoe Bhikharie

Master’s Thesis 2018

Department of Computer Sciences
Section: Business Web & Media

Vrije Universiteit Amsterdam

De Boelelaan 1105, 1081 HV Amsterdam
Telephone +31 20 598 9898

Cover: A visual metaphor for exploring the intersection between choice and media. The camera is
cropped with the pen tool in Sketch 3. It comes from a beautiful photograph made by Fabrizio
Verrecchia. The image in the camera is cropped from an epic background figure shot by Tom Barrett.
Unsplash.com is the website where these beautiful gems have been found. The camera icons (record
icon, time icon and battery icon) are made by yours truly with the marvelous pen tool.

Typeset in Lual&ATEX
Printed by Melvin’s printer in his home
Amsterdam, The Netherlands 2018

http://www.unsplash.com

Exploring hypermedia in 2018 through the lens of XIMPEL
Implications on education, parallel media and frustration detection
Melvin Roest

student number: 1914588

Department of Computer Sciences

Section: Business Web & Media

Vrije Universiteit Amsterdam

Abstract

Hypermedia is a research topic that has gone into obscurity. However, it is useful for many different use
cases such as education and interactive storytelling. The web front-end framework XIMPEL (eXtensi-
ble Interactive Media Player for Entertainment and Learning) is a cross section between hypermedia,
storytelling and gameplay. It is able to provide for these use cases, as well as the unique use case of for
a (subset of) digital games creation such as simple shooters, point & click adventures and playthroughs
of simple existing games such as Flappy Bird.

This thesis is an exploration on the topic of hypermedia that was seeded with the question of: how does
XIMPEL need to be extended in order to facilitate development for a bigger variety of educational
applications? This led to other questions which were then looked into as well while keeping the
following question in mind: what research topics are relevant for hypermedia in order to advance the
field? The approach of asking a question giving an answer, which may lead to another question is
called an exploration. If a new question arose, then that question was pursued if an adequate answer
or approach to an adequate answer was found with regards to the old question. Six explorations have
been done and produced the following outcomes:

Exploration 1: XIMPEL could not offer interactive programming lessons. It has been extended with
a new terminal tag in order to allow interactive command-line lessons.

Exploration 2: XIMPEL could not offer parallel media playback. It has been extended with a parallel
tag for parallel media playback.

Exploration 3: XIMPEL and ReactJS seemed to have many similarities, which could justify a port
of XIMPEL to ReactJS in order to develop and maintain XIMPEL more effectively in the future. To
explore this link, XIMPEL has been reimplemented in ReactJS and results are mostly positive.
Exploration 4: frustration and engagement are important topics for education and have not been
explored in hypermedia research. A nuanced characterization of frustration is motivated through
literature. Moreover, XIMPEL has been extended with detecting it in users through facial expression
classification and capturing: mouse movements, mouse clicks and the user history.

Exploration 5: design questions of time scrubbing and parallel media has been explored. All permu-
tations on the design questions asked have been illustrated by figures.

Exploration 6: mechanisms for media playback that needs to play after an overlaying rectangle
shaped link is clicked are presented.

In the process of these explorations, XIMPEL has been extended for better massive open online
course creation by being extended with a microservice architecture. It has been found that parallel
media playback impacts design and implementation more than expected such as the design questions
regarding time scrubbing or media items surviving subjects switches (exploration 6). Exploration 6
would be impossible without parallel media playback. The most potent future areas of research are:
user testing regarding time scrubbing and hypermedia, XIMPEL and the intersection of augmented and
virtual reality, hypermedia and gamification, remixing the web through hypermedia, hypermedia and
its potential for procedural rhetoric and porting XIMPEL to React Native in order to make gamified
hypermedia possible on smart phones and tablets.

Keywords: hypermedia, gameplay, frustration, engagement, interactive narratives, choice, education,
software development, exploratory research.

0.1 Preface

Hello dear reader,

welcome to the preface of my computer science thesis. Before we start I would like to point out that
computer science is not about computers, nor is it a science. It is not about computers since the
computer is a tool. It is mainly a tool for simple calculations in a step by step fashion (e.g. adding,
subtracting or multiplication, remembering old results). Producing a series of these steps is what
makes these calculations complicated or complex. In itself this is not really useful for the lay person.
It calculates what? How do we see this calculation? In 2018, we see things through a computer screen.
The combination of a computer and a computer screen (and speakers) allows us to consume multimedia
content like audio, images or videos. 50 years ago, this idea was groundbreaking. Douglas Engelbart
demonstrated in 1968 what a computer combined with a screen, speakers, keyboard and a mouse is
really capable of[48]. When people talk about computers they imply that a computer screen, speakers,
keyboard and mouse comes attached with it. However, since my grandparents might read this preface,
I will not do the same.

So computers (including computer screens and speakers) are about the ability to: consume multimedia,
perform calculations and control these two things in a very fine-grained or coarse-grained fashion.
The big problem with this model is that in order to use a computer, one needs to have detailed
knowledge about the inner workings of a computer in order to perform calculations or consume (or
create) multimedia. The few people who had this knowledge decided to make it easier for others by
instructing the computer to load up images of a metaphorical desktop with files on it. Most people
have some experience with an actual desktop and actual files, and it helped. All computers do this
automatically nowadays. These combined computer instructions are able to — in this example — load
up images of a desktop with files. Together, these instructions are called a computer program, or
better known as software. This particular piece of software is called an operating system. The few
people with expert knowledge decided to build more instructions with even more metaphors that would
allow people to understand how to perform calculations on a computer and create or consume media.
The spreadsheet application was one of the first pieces of software that made the computers ability to
calculate tangible for the lay person.

The study of computer science is not about computers. Computer science courses are not about the
computer itself but the software running on it. Perhaps software science would be a better term
then? It even has an alliteration! Most courses I followed were about the creation of software. More
specifically, it is about software in general and the creation of software in order to make software
creation easier’. In other words, it is not about computers. The courses were about about creating
software and creating software that allows one to create software more easily. Perhaps it could be
called meta-software creation. This reflective quality sure makes it have some deeper layers, which feel
right at home at a university.

It is also arguably not about science. Science can be defined in many ways. I recommend the reader
to follow an introductory course in the philosophy of science if they have not done so. I also would like
to note that some researchers do not necessarily know about the philosophy of science. Nevertheless,
in the philosophy of science it becomes quite clear that there are multiple views on what science is.
So there is probably a way of arguing that it is a science. I have spoken to physicists who believe
psychology is not a science and spoken to angry psychologists who believe it is. The claim that
something is not a science could become quite a messy and emotionally heated discussion.

However, unlike psychologists, the computer science community internally disagrees on the question

IComputer graphics (computer graphics engine creation), Multimedia authoring (general software creation), Dis-
tributed Multimedia Systems (fundamentals of multimedia streams and codecs), Distributed Systems (one piece of
software on multiple computers and its implications), Knowledge and Media (information organization), The Social Web
(web app creation with a social twist), Experimental design and data analysis (statistics for programmers), Concur-
rency and Multithreading (writing software for multiple processor cores), Software Configuration Management (tracking
changes in software), Operating Systems (creating operating systems and understanding how operating systems work),
Systems Security (how to defend against people using software in ways it was not intended, mostly for personal enrich-
ment purposes), Binary and Malware Analysis (how to analyze software created for criminal purposes)

whether it is a science or not [24]. At its most optimistic one could argue that computer scientists
are unknowingly practicing science. A cynic would say that there are simply two types of computer
scientists: those who practice science and those who do not. However, it begs the question how can one
practice science unknowingly? And how can papers be published as science by non-science practicing
computer scientists? The answer is: any argument that I come up with to give a proper justification
is far-fetched and hairy.

What shocks me the most is the little reflection I have experienced on the Vrije Universiteit Amsterdam
regarding whether it is a science. I do not think this only pertains to the Vrije Universiteit Amsterdam.
When I was at the Foundation of Digital Games conference, there was a research paper on all the
research of game studies clustered in graphs [62] and if I remember correctly, it proved a point that
scientific philosopher Kuhn or Lakatos made. I remember that I told them that this point was made
by one of the two philosophers of science and they never heard about the philosophy of science as a
field! Yet, their methodology was a demonstration on how science could be seen as a social construct
and has loosely defined principles at best. It gives me some faith in the academic community that
they do not need philosophers of science to showcase similar thoughts, but at the same time Google
Scholar is one or two clicks away.

The most notable example at the Vrije Universiteit Amsterdam was when I asked in a computer
security class “is computer science a science?” 1 got laughed at. Then, the security researcher looked
at me with a pause and said “it is not science. It is engineering.” [44] I did not ask the class why they
laughed at me, but a friend and classmate laughed at me because he had a full conviction that it is a
science — he was really surprised to hear the lecturer say otherwise. I believe that many people in that
class had the same reaction for more or less the same reasons. It is a shame that my university was
not the place that these in-class discussions happened more often and when they do, you get laughed
at. Another example: just before publishing this thesis, I found a blog post of an Al researcher that
I like who also claims his work is “not science, barely engineering and absolutely not mathematics.”
Nevertheless, it is “valuable and interesting research.” [95] I agree, his research his awesome.

I cannot blame the average reflection of the computer science student regarding this question. As
you may have read in a previous footnote, there is no course about such reflectiveness! Contrast this
with my psychology bachelor program and it is visible that one third of the courses are directly about
this question or connected to the question: is psychology a science? Psychologists would say yes and
have compelling arguments. Though they are terrible practitioners of it as a group, but they even
acknowledge it! [17] That is scientific integrity, especially considering the forces that work against
academia nowadays. Apparently, these problems exist in many disciplines, but I do not know enough
about them to comment on it.

Now, dear reader, there are a few problems. The first one is that this thesis is for a degree of a master
in science. I feel like a charlatan, because I believe software creation to be more close to engineering
than science. The saving grace is that engineers are useful to scientists since they are more capable
for developing and commercializing tools that allow the advancement of science?. Computer scientists
create software of a certain complexity and with a certain reflectiveness in mind, but most of the time
it is not science. Moreover, when it is arguably science it may pertain to another discipline. For
example, human-computer interaction is psychology. The theory of computation is called theoretical
computer science but to me it seems like mathematics. Is mathematics even a science? Forget I asked,
it is at least very helpful to science. I find something being helpful to science a much more important
criterion on whether something is academic than if a certain pursuit is scientific.

The second problem is that this master program gave me very little formal scientific training. What I
know about science comes from: my own interest, my bachelor in psychology and my master in game
studies. So I happen to know a thing or two about science and demonstrated it in the respective
programs. But what is a thesis supposed to be for computer science? It is confusing to say the
least. For example, a friend of mine created an app that should be able to foster trust in people as a

2For example, I wonder how many computer scientists or similar researchers develop tools for other research depart-
ments. I would be a prime candidate to do this in the future. And I have done this in the past for the psychology and
education department at my university.

master thesis of computer science. One could say it is human-computer Interaction. I would say it is
psychology. The app is the intervention in order to create a certain behavioral outcome. I would also
say it is useful and beneficial for society to have an app that helps fostering trust in a day and age
where it sometimes seems to be lacking a bit.

Because of this confusion, I decided upon an I am going to please everybody approach. Not only
because it seems like my best bet to get a degree in computer science, but also because it seems to
be really fun and reflective on the process of science itself! Parts of this thesis are clearly scientific in
nature (e.g. chapter 5 where I try to track frustrated facial expressions among other things). Parts
of this thesis are engineering (e.g. chapter 2, 3, 4 and 7). Perhaps computer scientists consider it
academic, I would not know since the training on academic writing in computer science was very low
at the Vrije Universiteit Amsterdam. While I did enjoy a great amount of academic writing skills in
my psychology program and game studies program?, they are different fields and their quirks get in
the way of understanding the science in computer science. And to cement the academic nature of my
thesis I wrote a chapter that is very similar in methodology but uniquely different to someone else his
master thesis, who got a degree in computer science because of it. If people believe my thesis to be
non-academic, then I can point to his work and claim my work is comparable and therefore worthy of
a degree (see chapter 4).

So I covered three aspects in which my thesis is worthy for receiving a computer science degree. It
is: scientific, engineering and up to the standards of other people who wrote theses in a similar style,
pertaining to that specific chapter. Another reason why I wrote this thesis is because this project
would set me up for industry. It involved a lot of web development in technologies employers are
searching for. It is my personal goal to be employable since most of my family have blue collar jobs
and they did not want me to suffer the same almost back breaking fate. The final reason is because it
is fun! Science is fun. Exploring a topic is fun. And the theme of transformation in computer science
(e.g. parsing) is fun! One chapter shows me having pure fun deep diving a topic, which is chapter 6.
The chapter is not: scientific, engineering or a blueprint in order to get your degree. However, it does
ask important questions needed to advance the field of research that I am exploring: hypermedia.

A third problem is that academia in general is quite rooted in tradition and conventions. One is not
being able to write “I” lest it hampers the objectivity of one’s statements. However, how do these
conventions make sense when computer scientists do not even agree on basic questions regarding its
scientific status? I believe, that people follow conventions because they either have to or are not even
thinking about it. The reason I believe this is because in every academic writing course or exercise
teachers told me a variation of: we follow conventions because other people do. In high school I learned
this is a fallacy. Therefore, I have decided to relax any conventions as much as possible since I believe
academics are following them blindly. Sometimes I do use those conventions in order to give fellow
students and academics a sense of familiarity.

Unfortunately, I introduce problems by taking this approach since it will be tougher to understand
me. Researchers and research articles normally follow a blueprint. This thesis relaxes this blueprint.
I will do my best to foreshadow at any point what is about to come, especially if it is something more
unconventional. Moreover, I encourage the reader to take out the good bits of this thesis and leave the
bad bits (no error correcting pun intended). Doing a thesis this way is an exploration and almost a
small experiment in itself — except it is not controlled enough to be called an experiment. Innovation
means taking on risk and I ask my supervisors to allow me to take this risk even if it fails. My other
theses show that I know how to do experiments or write academically, this format — including this
preface — is hopefully the start of a discussion on how to improve the academic writing and publishing
process.

So what do I do differently? Ha! I am glad you asked! In this thesis I explore. It has six explorations®.
Some of these have a theoretical background, others do not, which is on purpose. In these explorations

3] should probably note that my game studies program was followed at the Universiteit van Amsterdam. My psy-
chology bachelor was at the Vrije Universiteit Amsterdam.

4Edit: 7 now, I keep on going, I am pretty sure my supervisors would have been happy with only the first 4
explorations. The seventh exploration is in appendix A. The thesis deadline is too close to rewrite everything.

I will tell the story of how I came to that particular exploration. I believe it is important to tell the
context of an exploration, because it may help others to be inspired to form intuitions to advance their
academic or scientific thinking. This part is always overlooked in published papers, which makes no
sense to me. I thought the observation part of the empirical cycle is a necessary step, then why is it
underreported? The process of how one does science should be part of academia, even if it sounds
silly.

0.2 A small guide on the reference list and footnotes

I am a big fan of showing where I got my information from. However, I found it too restrictive to only
cite academic sources. Therefore, I did not. Unfortunately, a citation seems rather authorative [42,
13, 7].

In this case I just wrote random numbers. The first number is the answer to the ultimate question
of life, the universe, and everything. The other number is rather unlucky according to superstitious
folks. The final number is lucky in a gambling context or biblical in a religious one. More importantly,
if these three numbers gave you a small feeling that I knew what I was talking about, then I have
successfully fooled you. Sources should not induce such a feeling, since the source always needs to be
verified, not glossed over! Alas, I know that most academics do not have the time. Because of this, I
organized my bibliography slightly differently than what I have been taught.

First of all, my bibliography has section headers. The sections Articles and Conferences Papers are
peer-reviewed. The references of the section Master Theses are reviewed by the respective supervisor
and second reader. The section Other Online Sources, Books, Book Chapters, Chapters in a Col-
lection, Misc and Reports are academic in nature but not peer-reviewed. Github repositories speak
for themselves. The final section Hip Blog Posts From The Web and Hypermedia Companies are not
peer-reviewed or academic. Why do I use these as references? To show where I know my truth from.
I fortunately use references of the Hip Blog Posts section rarely and for very tangential related ideas.
These references are not strictly needed for this thesis (the articles are a fun read though!).

Then, there are also footnotes. In some cases these footnotes have URLs. These URLs did not make
the reference list for the simple reason that in most cases are also very tangentially related, and I have
one or two sentences on how to use the resource in the context of this thesis. These footnotes are as
important the Hip Blog Posts section. Though in some cases they are rather serious material (e.g. see
the footnote in exploration 4 about PCA and related statistical methods).

0.3 Acknowledgements

I have many people to thank for writing my most daring academic thesis and text. First and foremost, I
have to thank my supervisor Anton Eliéns who has the audacity to be controversial if his first principle
styled or associative thinking leads him there. I am grateful for that he is giving me the space to do my
utmost best, no matter how unconventional it looks. Also, the one on one discussions I had with him
are always thought provoking and amazing. I have to thank my second reader Sander Bakkes for being
the biggest contributor in showing that I matter to the academic community. This is especially true
after feeling like I did not matter during psychology degree, or during my bachelor thesis of information
science where I believed to have a publishable result (it probably still is, anyone?). T also would like
to thank Winoe Bhikharie for showing how to create magic with the frontend framework I wrote a
whole thesis about. T also want to give a warm thanks to Hugo Huurdeman. He made me believe the
frontend framework of which the name will be mentioned a lot (!) later on has a future. This thesis
project started out in a completely different way on a completely different subject. Because of this,
I have met people at the play space company called Terragon. I would like to thank everyone I met
there, especially Minne Belger. If one person is larger than life, it is you. When it comes to people at
the Vrije Universiteit Amsterdam in general I have to give Otto Schrofer a heartfelt thanks. I know

T am not the easiest student (probably measurable by the number of words this preface is), but you
guided me above and beyond. The same goes for Frank Nack at the University of Amsterdam who
helped me a great deal for having issues regarding academia.

I would also like to thank people I am close to. A few of them stand out. Timothy Tjen A Looi
is the first person to thank. He helped me obtaining a JavaScript/NodeJS teaching position at the
New York Code + Design Academy and then pulled me into Fleks, a startup that needed help with
their ReactJS-driven application. Becoming a teacher and freelancer while writing a thesis forced
me to professionalize, which helped my programming and my workflow for my thesis as well as my
professional life. The conversations we still have about programming are invaluable. The same thanks
about awesome programming conversations goes to Gabor Kozar. Creating a virtual environment so
that you can have ring 0 privileges, play kernel and prevent dangling pointers during memory allocation
is no easy task. But you did it and I am proud of you! On another note, I have to express my gratitude
to Marvel Maljers. I believed I was reflective on the question of what science is, until you claimed that
all science is gendered and prompted me into asking myself what that means. It is statements like
those that advance my thinking and allow me to do seemingly crazy things all in the hope to advance
the positive parts of humanity. Your steps that took you into learning C, Python and JavaScript
directly made it into this thesis through means of a picture with a rubber duck. It is a picture from
the course of Introduction to Computer Science by Harvard, also known as CS50. CS50 is an amazing
inspirational source on how to give online computer science education. Moreover, I just have to thank
you in general: you support me, help me in developing to become a better person (by the way, I
meditated today!) and keep me curious. Somehow I really felt that going to opera’s and piano trios
helped me to appreciate media a lot more in a much broader context. I also thoroughly enjoyed the
conversations I had with your mother about my thesis. It was the first time in my life that I connected
with someone on the struggle of writing a thesis, because it can be a struggle! So Chantal, thank you.
Moreover, Chantal your husband will be acknowledged as well because the general brainstorms I had
with him, or talks about algorithms or algorithmic art were all topics that played a role in writing
this little non-fictional novel that I call my thesis. I also have to thank Jeffrey Bruijntjes who gave me
advice on domain specific languages, which this thesis will partially be about. But Jeffrey, I mostly
have to thank you for joining me on a journey that we walked together! It was crazy, it was fun and
man you are fast! You won the race, and I miss you. I hope working life at ING is treating you well.
Since my acknowledgements section has been written in a short span of time — a snapshot if you will
— it may be the case that I have forgotten some people who really helped me with it. For everyone
who felt they have invested in me working on my thesis, I would like to extent my gratitude to you. I
am sorry that you were not directly included, but since my thesis will be hosted on my website, I can
always update it and add you in order to resolve this.

Finally, I would like to thank my grandparents. I know you have no clue what I am doing, and you may
not even read this. But I feel your support every day. Moreover, the relentless focus on being able to
do mental arithmetic and touch typing as a kid undeniably helped me to learn computer programming
faster and better than I otherwise would have.

There is also a postface! Apparently, it is a preface put after the main body of work. There were
some topics that I believe are more interesting to discuss after you have read the thesis like my own
evaluation, for example.

Introduction

In a lot of cases groundbreaking scientific discoveries are made by accident. Without these serendipitous
discoveries we would not have: penicillin [98], the discovery of cosmic background radiation [15], the
microwave [98], X-rays [98], the pacemaker [98], matches [98], gunpowder [98], nuclear fission [98] and
the chocolate chip cookie [100]. So it begs the question should we have a plan at all? Just explore!
This is a risky proposition indeed but not one without merit.

In his book Against Method Feyerabend argued for the idea that scientists should have a dose of theo-
retical anarchism [34]. He showed that groundbreaking discoveries did not come about by adhering to a
strict scientific methodology. Quite the contrary, in the case studies that he outlined all methodological
principles were violated at some point.

This is not to say that researchers are able to do whatever they want, but if exploration is a part of
research, then according to Feyerabend “anything goes.” [34] And in this thesis, exploration will be
the biggest theme. For I (Melvin Roest) explore. For I fiddle and break things. For I acknowledge my
subjective perspective and try to advance the realm of scientific knowledge.

“What is the exploration you are on?” you might ask. In its most simplest form I am exploring the
intersection of a certain framework (XIMPEL) and its relationship to education, user profiling and
hypermedia (the biggest theme). This is choice is not entirely objective. In most cases it cannot be. I
study at the Vrije Universiteit Amsterdam and there is a research group developing this framework.
If T would have done my Master thesis at the CWT (Institute of Informatics in The Netherlands), then
I would have most likely done similar explorations with its competitor SMIL. Moreover, this choice
has a component of necessity. If hypermedia and user profiling in hypermedia (and by extension the
web) had been more well-documented this exploration had been more focused on (computer science)
education. In order to serve education, exploring these topics are needed.

Fortunately, XIMPEL has one saving grace in which I could make it sound objective, which is: for the
last 10 years XIMPEL always attempted to be at the intersection of educational games and hypermedia.
It furthermore never had a logging extension for user profiling . It is most likely the only framework
to have had this intersection. Therefore, asking the question of: “what is the relationship between
XIMPEL and education?” does not sound out of the ordinary. Neither does “how does XIMPEL need
to be improved for it to better serve education?” These were the questions I started with.

In my first explorations I extended XIMPEL to create a command-line tutorial. Would it be beneficial
to make such a thing with XIMPEL compared to creating it from scratch (spoiler alert: yes)? In other
explorations I simply built on future work from Stefan Bruins since it was (1) future work and (2) it
was a key pillar in creating a command-line tutorial. There also were explorations in which I had a
failed result relatively quickly. Yet another exploration could be seen more as traditionally academic.
My penultimate exploration is entirely conceptual. And my final exploration is a showcase of hacking
for future XIMPEL media type developers. Though, I have to warn you dear reader, there is a secret
final exploration. After reading this thesis, would you know which one it is? Knowing it gives a hint

IThough when my logging extension was complete, I discovered that another logging extension had been independently
made for XIMPEL in Norway by Dan Michael O. Heggg and Huggo Huurdeman. Fortunately, the focus of both logging
extensions are different enough in aim and design to be separate useful contributions.

1. Introduction

of the thesis writing process. For the process of scientific discovery itself should also be a science?.

On my explorations I got into more questions. Such as: “what does interactivity mean for media and
hypermedia?” or “is there a faster way to develop XIMPEL?” and as a last teaser “how could we
improve the user experience of a XIMPEL presentation and make it less frustrating? Should it be
less frustrating in the first place?” These questions will be more formally introduced in each relevant
chapter.

1.1 What is XIMPEL?

Talking about a framework without explaining it does not sound like it is XIMPEL at all. It needs
an explanation! More importantly, it needs a showcase. Multimedia frameworks and the like are best
to be shown and explained afterwards. For the readers who never saw a XIMPEL presentation, Go
to http://www.ximpel.net/showcase. The Abel Prize presentation and the tour of the Zaansce Schans
presentation show various capabilities of what XIMPEL is able to do.

There is a reason that I display a link directly in the text and not in a footnote or as a reference. It
would make both our lives much more simple if you would click on that link and see what XIMPEL
is about. The paper model in academia is a bit archaic. Because of this I encourage you to be bold,
click the link and experience what XIMPEL is about!

Now dear reader you have a choice. To read on, or to go to the link.

What will you do?

Who said that textual media has to be linear? You can jump to a video on the web and then read on.
Click on http://www.ximpel.net/showcase if you want to see the showcase, or do nothing if you want
to stay here.

If you do nothing you are missing out dear reader. Our visual cortices process information so much
better than the little areas we have dedicated to purely reading.

T advice you to go to http://www.ximpel.net/showcase.

You have made your choice. We will move on?.

The short explanation is that XIMPEL is a hypermedia player (linked media through overlays which
are overlaying shapes such as rectangles) or an interactive video player (linked video through overlays),
depending on whom is asked. The core feature of XIMPEL is that through XML, it is easy for non-
programmers to play media and link it to other media by a mechanism called overlays. For example,
one video is playing and one transparent square (an overlay) is in the upper right corner. A user clicks
on it and another video with an image appears and both start playback from the beginning. That is
the essence of XIMPEL.

When it comes to the XIMPEL framework the following stakeholders take a role in the production or
consumption of a presentation. (1) XIMPEL core developers who maintain and expand the core of
the framework. (2) XIMPEL media type developers who create plugins for the XIMPEL system. It
is analogous to Wordpress plugin developers. (3) The author of a XIMPEL presentation. And finally,
(4) users experiencing a XIMPEL presentation.

XIMPEL its main focus is to make the lives of XIMPEL presentation creators — also known as XIMPEL
authors — easy and simple while nudging them to become a bit more literate in programming. In today’s
world it is “program or be programmed” [19]. The way XIMPEL achieves this is by having an own
XML specification for creating a XIMPEL presentation, known as a XIMPEL playlist. XIMPEL
authors only need to know how to write this form of XML and when they do, they are able to make a
presentation. It is useful in the same way that finite state machines (FSMs) are useful as opposed to
a computer: the application of FSMs are limited but within that limit, it is easier to create what one
wants to create.

2Addendum: exploration 7 is now the final exploration! This exploration has been unplanned, out of the scope of
this thesis and is therefore found in appendix A. The question about the secret final exploration pertains to the first six
explorations.

3There is a mirror on http://melvinroest.com/ximpel/showcase

http://melvinroest.com/ximpel/showcase

1. Introduction

1.2 Thesis structure

Before we move on I will introduce you to a short history of hypermedia. This knowledge situates
the context of what XIMPEL is, what it is not and which ideas from hypermedia are fundamental to
XIMPEL. After that introduction we will move on to the explorations. For each exploration: we will
first start with a short story on how I came about the idea to explore a certain topic and why it is
relevant. Then I will continue to explore the topic. Each exploration will have its conclusion. After all
the explorations have been presented a general discussion section concludes the thesis by summarizing
it and by giving future work recommendations. As a last note, all the code is on my personal Github
account (view the links at [87, 86, 84, 88, 85]).

Reflection - Standard Academic Style

In the penultimate thesis meeting, both of the assessing readers claimed that while the research
questions regarding this thesis exist, they are a bit too unclear when reading the thesis. This is
a similar comment to my assessment in the postface. Both readers understood the contents of
this thesis. However, they are afraid that no one else will due to its free spirited writing style.
It is not that this thesis is impossible to read. The problem is that this thesis is impossible to
read within a reasonable amount of time. For this reason, they both suggested that reflection
boxes are written per exploration and in the introduction. A reflection box looks like this, and
are the most important pieces of text if the reader values a standard academic writing style or
quick reading experience.

They would also call them irony boxes, since they broadly agreed with the assessment, made
in this thesis, about the status of scientific texts. However, they learned that conformism has
a necessary role to play. Conformism allows for survival upon closer scrutiny, and — according
to one reader — probably makes some contributions of this thesis a bit more visible.

Consider the aggregation of these boxes a thorough academic summary. It is bigger than
the abstract, but still readable within a reasonable amount of time. As for this particular
reflection in the introduction, it will be stated: what the research questions are, the approach
for answering them, the expected results and how this is academically relevant. Moreover,
standard academic conventions will apply regarding the next reflection boxes.

1. Introduction

Research Questions

Massive Online Open Courses are possible through a mixture of HTML, CSS and JavaScript.
Certain types of non-linearity are not well-captured within HTML documents such as the notion
of a playlist. For example, it does not seem possible to have multiple HTML documents within
one file and then select which one to render. The ideas in the (perhaps) forgotten sibling of
hypertext, which is hypermedia, does have such a notion and therefore seems to add useful
mechanisms for delivering online education.

Perhaps the biggest reason hypermedia frameworks did not come to fruition has been because
of a lack of funding and comparatively little effort, as opposed to the industry-driven HTML
specification (e.g. Google, Mozilla and Microsoft). This is not only regarding hypermedia
frameworks, this is even regarding HTML and the W3C. The browser vendors are collaborating
and are in control of the HTML standard [49]. Nevertheless, a hypermedia framework that has
survived in good condition during the competition with the current hypertext and HTML
standard is XIMPEL.

Extending XIMPEL may give insights into the uniqueness regarding what hypermedia may have
to offer. However, an extension for all domains would be out of the scope for this particular
project and XIMPEL has already shown promise in education by being used in courses at the
Vrije Universiteit Amsterdam since 2007. Therefore, the most important research question is:
(1) how does XIMPEL need to be extended to contribute to online education?

During the explorations it became more apparent that having an implemented parallel playback
feature trickled down into all kinds of manners in the XIMPEL framework. While this has been
unintentional, a clear question arose with it. This question is relevant in most explorations.
The second research question is: (2) what are the (technical and design) implications of parallel
media playback?

Another theme that became apparent is that XIMPEL is not a pure hypermedia framework. A
good example of a pure hypermedia framework is SMIL. However, XIMPEL has been created
with non-linear storytelling and gameplay in mind. While storytelling seems to be aligned with
hypermedia, gaming does not seem to be aligned with it. Therefore, in some explorations the
third research question has been asked, which is: (3) what areas of research could XIMPEL
benefit from, and how?

Question 1 will be present in all explorations. Question 2 will be present in most explorations.
Question 3 will be present in some explorations. The research questions have been chosen on
their orthogonality, meaning that the idea is that they go in relatively unassociated directions.

1.3 A brief Amsterdam-centric history of hypermedia

The research area that the XIMPEL framework connects with or situates itself in are: education,
game-design, narrative structures, interactive video and hypermedia. There might be more areas, but
previous research regarding XIMPEL has been around these areas [31, 4, 30, 8]. A chapter published
in 2016 about XIMPEL is called: “XIMPEL for Education — inspiring creativity through storytelling
and gameplay.” Furthermore, XIMPEL presentations themselves demonstrate that they are a form of
interactive video. A user is able to click on overlays and then jumps to another video which could be
part of a narrative. Interactive video is a part of hypermedia and since more media items are able to
be linked in XIMPEL one could argue that XIMPEL itself is a hypermedia framework or at the very
least heavily inspired by ideals of hypermedia.

Because of this it is of utmost importance to describe this field. Hypermedia is the research field where
fundamental questions regarding XIMPEL lie. Without the ideas of hypermedia, and by extension
ideas surrounding the world wide web, there would be no XIMPEL. By portraying the historical roots,
any reader is able to have an idea of how this research field has developed. On another note, to a

1. Introduction

certain extent, the research field of interactive video is implicitly described a little bit as well since it
is part of hypermedia.

Education, game-design and narrative structures are research fields of their own that are associated
with XIMPEL but not the research context of XIMPEL. The connection of education, game-design
and narrative structures to XIMPEL are that it is possible to create presentations or applications with
XIMPEL with possible help of these research fields. These applications may show unexplored topics of
areas of research within these research fields. Since not all XIMPEL presentations or applications are
subsumed under these research fields, they will not be described from a historical perspective. Where
it is needed, research from these areas will be used as reference.

1.3.1 In the beginning

In his essay As We May Think, Vannevar Bush envisioned what we would now call the information age.
He wrote: “Wholly new forms of encyclopedias will appear, ready-made with a mesh of associative
trails running through them, ready to be dropped into the memex and there amplified.” [10] The
memex was a hypothetical machine that would store all sorts of media through film. The storage
mechanism resembles technology of the year the essay was written in (1945), such as microfilm. I
would not be able to describe that mechanism well since my knowledge of mechanical technologies is
very limited. Fortunately, that is not important.

What is important is that this hypothetical device was seen as a proto-hypertext system at the time.
At the time, such a system was wholly hypothetical, just like any modern algorithm that has yet to
be executed for the first time. Features that stand out are: the ability the connect sequences of media
(they called it associative linking), being able to annotate media and retrieval upon cues rather than
using an index. Bush focused on the idea of supplementing creative thinking, which he believed a
non-linear media display and retrieval system would be able to accomplish.

As We May Think has been a highly influential essay. For example, it influenced Douglas Engelbart,
for whom it helped to conceive: hypertext, the computer mouse and the computer display [32, 33].
During that time things were called differently. It was not a mouse but a pointer*. It was not called
a computer display but a computer-driven cathode-ray-tube display. Apparently, seminal visionary
essays about information technology of the future do write about how such technology should be
implemented.

Independently, Ted Nelson, who coined the terms hypertext and hypermedia, has been influenced by
the essay. He designed the first hypertext system called Xanadu. This first hypertext system, while
old, still has ideas that compete with the dominant hypertext system today, the world wide web. From
this perspective it is important to understand that: while the world has adopted a hypertext system,
skepticism about the system still needs to be applied, debates about the benefits of it still need to
happen. The Xanadu hypertext system implemented two way linking (e.g. no 404 errors) and version
control management. It may still be useful for communities of people who are in dire need of these
features. One of the reasons Xanadu did not get adopted is because the ideas have only relatively
recently been fully implemented® — in 2014. Possible causes are: (1) being too early and (2) lack of
funding.

1.3.2 What is hypermedia

Hypermedia is to media what hypertext is to text. Moreover, text is a form of media. The idea of
hypertext itself is confusing since it can be seen as (1) text with links or (2) the HTML specification.
HTML is a markup language for hypertext, but there are also images and since HTML5 also video
and audio. With this recent addition, it could be argued that HTML5 has hypermedia elements, much
more so than the earlier versions of HTML.

4Why did we move away from this term? A pointer makes sense!
5An easily digestable demonstration of the system can be seen in this YouTube video: https://www.youtube.com/
watch?v=KIOuRuvQ10c

https://www.youtube.com/watch?v=KIOuRuvQ10c
https://www.youtube.com/watch?v=KIOuRuvQ10c

1. Introduction

The conceptualization of hypermedia started in the early 90’s, and during that time HTML was purely
meant for (hyper)text [3]. Hence, the first definition of hypertext seems to be the intended definition
by the authors of the early 90’s. So a hypermedia system can be viewed as a system that is able to
display all forms of media and all forms of media can be linked to each other in the way that users are
nowadays familiar with the web (e.g. by tapping or clicking on areas that link to some other form of
media).

Regarding the implementation of a hypermedia system it needs to have 3 components: (1) a description
of its media components, (2) a way of defining relationships between media components such that they
are connected and (3) a way of presenting these components on the computer screen. Media components
could be blocks of text, animations, audio, video and user-defined media components. Links describe
the relationships between media component. The idea of linking could be defined in a number of ways.
The presentation can be determined by the hypermedia system itself through a rendering system.
Specifically for XIMPEL these 3 components have been realized by using web technologies. (1) the
description of media components are described in XML within a document called the playlist, (2)
overlays (hovering rectangles or other shapes that are clickable) can be laid over the media item
playing within XIMPEL and when clicked, it stops the current media item and plays the media item
that the overlay links to. (3) The Flash player used to be the rendering engine of XIMPEL. Nowadays,
it is the browser for which HTML5, CSS and JavaScript are needed regarding the rendering process.
During the early 90’s, research in hypermedia has been conceived by research on hypertext systems.
Most notably, the Dexter Hypertext Reference Model has been influential in the development regarding
popular hypermedia concepts [42]. It has been competing against the hypertext model of Tim Berners-
Lee who created the world wide web as we know it today. The model itself came into existence after
two small workshops on hypertext, which had representative participants for most major hypertext
systems made during that time. The researchers behind the model, Halasz, Schwartz, Grgnbaek, Kaj
and Randall remarked that the model “is an attempt to capture, both formally and informally, the
important abstractions found in a wide range of existing and future hypertext systems” [41].

The Dexter Hypertext Reference Model (hereafter Dexter Model) has three layers: the run-time layer
(user interaction mechanisms), the storage layer (a network of nodes and links to those nodes) and
the within-component layer (content and structures within hypertext) [41]. A big difference compared
to the world wide web today is that links needed to resolve both ways [35]. If this was not the case,
then if one hypertext component was deleted, every hypertext component linking to it would need to
delete its link.

1.3.3 The Amsterdam Hypermedia Model

The Dexter Model gave rise to the Amsterdam Hypermedia Model. It is the predecessor of what was
going to be the most popular hypermedia framework for about twenty years. The most popular hyper-
media framework SMIL eventually became a W3C recommendation [71]. The Amsterdam Hypermedia
Model began by addressing the limitations of the Dexter Model for describing hypermedia. Hypertext
and hypermedia are not the same so it seems obvious that these limitations should exist.

Researchers on the Amsterdam Hypermedia Model, Hardman and Bulterman, stated that The Dexter
Model “has no notion of time beyond the within-component layer,” [42] and further stated it has "no
way of specifying higher-level presentation information, and no notion of context for an anchor” [42].
Context here means: does the whole presentation change or just a part of it? At the time their own
media model, the CWI Multimedia Interchange Format (CMIF), had the drawback that it did not
specify links but did address the other issues that the Dexter Model had. The solution was taking
inspiration from both and it could be argued that The Amsterdam Hypermedia Model in its shortest
(and not fully accurate) description is the combination of CMIF with linking capabilities inspired by
the Dexter Model.

The Amsterdam Hypermedia Model (AHM) is about combining multimedia in such a way that it
forms a presentation in which there is the possibility of (non-linear) choice at certain moments. For
example, one could watch a penguin video, see a header text penguins and then be presented with the

1. Introduction

choice to let them dance or to let them walk a bit more. One could then interact with the video by
stating the choice and then a subsequent video with new header text would be displayed. We will now
look on what the elements of the AHM are that allow us to create such a multimedia presentation.

1.3.3.1 Components

The AHM has multimedia resources which can be an image, text, video or music. These resources are
called atomic components. Another type of component is a composite component which can either be
a component that plays atomic components in parallel or a component that allows the user to select
one atomic component to be played. These are two respective types (parallel or choice) of the parallel
component. This design feature is stelern direct inspiration regarding parallel media play in XIMPEL
(see chapter 3).

1.3.3.2 Time

The AHM had a way of defining time relationships between siblings and children in a composite
component in the form of temporal relations. These relations are necessary, otherwise no one knows
when something ought to be played. For example, each child in a composite component has a start
time offset and a duration. An example of this is when a video plays, then when subtitles are played,
they need to start 5 seconds later than the video. The AHM also has the capability to define time
relationships between different (non-family) components via synchronization arcs, which are optional.
A synchronization arc allows non-siblings to have a timing relationship to each other. For example, it
can be determined when they should play one after another, what the variable length of this playback
may be, to what extent the system should enforce these rules. For more information see paragraph 3.1
of 9], another good resource is figures 5, 6 and from [42].

1.3.3.3 Channels

How is certain media presented? Is there space for a menu? How does that look like when a video is
played? Can a video play full screen when there is a menu? These questions are all about the general
styling of a multimedia presentation. To answer these questions, the AHM introduced the idea of
channels. Channels are “output devices for playing multimedia items” [42]. Channels play an atomic
component, for example: one channel could be playing videos, whereas another channel would display
text. It is not possible for a channel playing videos to also play text. Also, a channel can only play
one atomic component at a time. Examples of channel definition are: the default font size, size of
the window, z-index layers, and position of the multimedia element (atomic component). One could
already imagine that generic layouts are a good use case for channels since channels are reusable.

1.3.3.4 Links

Since the Dexter Model is different than the current model of the world wide web, the idea of links
here are slightly different as well. A link in the AHM can have a context. A link context allows for
specification for which part of the document needs to change. Specifying a link context has the idea
that when a presentation changes, it only changes what it needs to change, allowing for reusability of
the components in the AHM. Links ought to be clicked, and therefore links introduce choice. For this
reason, the choice component is an obvious but necessary requirement.

1.3.4 SMIL

“Most constructs in CMIF and SMIL are explicitly modeled by the Amsterdam hypermedia model”
[71]. Therefore, SMIL could be seen as the successor of the proposed AHM. SMIL has been the
standard on synchronized multimedia until 2013. While SMIL has been supported by a lot of well-
known companies, it has not been supported by all of them. Unfortunately, the SMIL working group

1. Introduction

disbanded and SMIL is not updated anymore [96, 97]. Moreover, future ideas of SMIL seem not to
be included as a standard, such as Time Style Sheets [56]. It seems that HTML5 bares the burden
of bringing hypermedia to the masses [97], albeit much less feature rich. An example of a SMIL
presentation can be found here [20] and a lecture about SMIL 3.0 and how the XML tags look like can
be found here [50]. Current SMIL presentations need an external player or browser plugin.

1.3.5 XIMPEL

In 2007 a new hypermedia framework started. It is called the eXtensible Interactive Media Player
for Entertainment and Learning [4, 31], or in other words: XIMPEL. Regarding to the origins of the
acronym: simpel is the Dutch word for simple. It was created in order to design a game about climate
change. The goal was to lead the debate away from pathos (emotional arguments) and towards logos
(logical arguments) [30, 31]. Before XIMPEL was conceived, the idea was to create an immersive
game with the Half-Life SDK about climate change. However, it seemed infeasible because of too few
resources. Therefore, the team created the XIMPEL framework and decided to created a game purely
based on videos still allowing for what they called a poor man’s immersion.
Borrowing ideas from hypermedia for game development was perhaps overlooked at the time since
hypermedia formats — including its platforms — such as SMIL were focused on a pure structure of
hypermedia. Where probably most (if not all) hypermedia platforms focused on the formalities of a
hypermedia system. The XIMPEL platform focused on exploring possible applications. XIMPEL was
created out of necessity for an educational game that would otherwise take a long time to make. From
this perspective, XIMPEL should be compared to game development engines and it is one of the most
unconventional game development engines in existence.
Over the years the framework has evolved from its Flex SDK/Flash roots to a HTML5/JS/CSS version.
One creator (Anton Eliéns) of XIMPEL taught every year how to use it to first year information science
students®. These students created at least one presentation with it in a group of 2 or 3. In some cases,
students ran into technical problems and either extended XIMPEL themselves or through the help
of Winoe Bhikharie. By doing this Anton and Winoe unwittingly explored the question: what can
hypermedia mean for serious games? Moreover, what hypermedia presentations are relevant and
interesting? While XIMPEL is a hypermedia system, the questions explored with it are about serious
games and non-linear narratives.
Current future work regarding XIMPEL is expanding the framework for usage of big tablet installations
at museums. One example of that is an app made for the Abel Prize, which is a prestigious prize for
mathematicians [46]. Workshops are given in Norway to librarians for whom the XML format is easy
to work with.
So XIMPEL is useful for:

e education,

e prototyping digital games,

o video narratives/interactive storytelling,

e storyboarding,

o big tablet installations

1.3.6 How XIMPEL works

XIMPEL has subjects. These subjects can be seen as states that the XIMPEL presentation or XIMPEL
application is in. Each subject is able to be linked to and has its own unique identifier. The goal of
these subjects is to play one (1) media item at a time. This concept is called sequential media playback.
A media item is an instance of a media type. Examples of media types are: audio, video, images, text
or a custom-defined media type (which can be anything). The links in XIMPEL are called overlays.
The default shape of an overlay is a white rectangle, this shape and color can be altered. When a
user clicks on an overlay, then the XIMPEL framework destroys whatever is displayed in the current

1 was a student in one of these years

1. Introduction

subjects and starts to play all media items that are associated with the subject id that the overlay
links to.

So the important actors in a XIMPEL presentation are: subjects, instantiated media types known as
media items and overlays which act as a linking mechanism to other subject when a user clicks on it.
In this thesis the core will be extended for subjects to play multiple media items. This extension is
presented in exploration 2 and is called parallel media playback.

Advanced features regarding XIMPEL are: (1) the ability to create quizzes, (2) associate any score to
any key when a user switches to another subject or clicks on an overlay and (3) the ability to have
conditional subject rendering by having the possibility to create simple if-statements when a user clicks
on an overlay or arrives at a subject. The advanced features deviate from the idea of hypermedia and
allows XIMPEL to be between hypermedia and gaming.

The official documentation is to be found at http://www.ximpel.net/documentation/. The up
to date documentation (for now) regarding the extended XIMPEL of this thesis is to be found at
http://melvinroest.com/ximpel/documentation/. In the programmer tradition of not repeating
myself, see these two resources if you want to know more technical details.

1.3.7 Now

Hypermedia is still here. One of the creators of SMIL (Dick Bulterman) asked himself how the ideas
he knows from SMIL could be useful for CSS. He proposed additional CSS attributes to the W3C [56].
Hypermedia and hypervideo systems have been ported to HTML5/JS/CSS and are still used today
[61, 12, 11].

All systems have their own unique spin on it. Some emphasize videos [61] or mix it with it with other
ideas of software engineering (e.g. learning objects) [11]. Others focus on hypermedia systems [12]. To
clear out confusion, this thesis is not about hypermedia APIs. A concept in API-design that allows
for REST-based APIs that are more flexible. For example, it is easier to avoid backwards compatible
breaking changes compared to standard REST API-design.

With the advent of HTML5 the role of hypermedia will be different. Considering an HTML document
merely as a document and not as a possible software application would be short-sighted. Thanks to
JavaScript it is possible to create: Linux in the browser [2], create a programmable computer through
the Game of Life [76] or create anything else that one could imagine. In short, it used to be very difficult
to create any application — requiring technologies like Flash. Now this is not the case anymore.
However, there is a role for hypermedia frameworks. While everything is possible with HTML5/C-
SS/JS, this does not mean it is the right level of abstraction. A hypermedia framework forces any
developer to think about non-linear narratives. Any developer framework that forces the developer
to create a subset of all computer applications could by extension be called a creative constraint
framework with regards to software creation. This is seen in industry as some companies implement
hypermedia ideas, particurlarly pertaining to non-linear video. Companies such as: Zentrick” [103],
Wirewax [99] and Eko [28] use proprietary frameworks and it shows the importance of creating open
source hypermedia frameworks.

1.4 Explorations

Now that we have some idea of where the philosophical forefathers of XIMPEL came from it is time
to explore! The conscious choice of having no methodology has been informed by the philosopher
Feyerabend. There are two starting questions. These are: what is the relationship between XIMPEL
and education? And how does XIMPEL need to be improved for it to better serve education?

The idea of the explorations are that once an exploration is done, it may give rise to other questions that
need to be explored. One exploration question came up by daydreaming about XIMPEL, this is explo-
ration 4. I took a course in user experience design and realized how important a good user experience

"They have an old application that they made for Unilever http://watch.zentrick.com/m5tMjr/

http://www.ximpel.net/documentation/
http://melvinroest.com/ximpel/documentation/
http://watch.zentrick.com/m5tMjr/

1. Introduction

is. During my time as a student I noticed that a lot of students experienced frustrating moments while
experiencing a XIMPEL presentation. It begged the question: is it possible to (semi)automatically
detect user frustration within XIMPEL presentations? One assumption is that this type of detection
may help the user experience for XIMPEL presentations. The chain of how one exploration caused
another exploration happened as follows: exploration 1 (from the starting questions), exploration 2
(from exploration 1 and from the starting questions), exploration 3 (from exploration 1), exploration
5 (from exploration 2) and exploration 6 (from exploration 2). For some preservation of the creative
context: what went through my mind will be a short story per exploration as the first few paragraphs.
Among other things, explorations have one key difference with experiments in that they are unfortu-
nately not reproducible. This is a blessing and a curse. It is a blessing because I have encountered
zero papers (!) that reported the reproduction of a result of another computer scientist. It is a curse,
because I am admitting that a certain form of objectivity is lost. To be fair, many papers in computer
science seem not to be reproducible because not enough information is presented in order to recreate
a proposed system. And the nature of the field gives the impression that engineering replaces science.
One could argue that working technology is a certain truth on its own, which is what science is about.
Fortunately, there are other ways to contribute towards the academic discussion for any given topic. A
few examples are: creating tools, new relevant examples of application regarding a particular system or
simply asking questions that have not been asked but which are relevant. In the following paragraphs
the specific contributions per exploration are stated.

In exploration 1 The implementation regarding the creation of a command-line tutorial in XIMPEL
is presented. The contribution of this exploration is showing the boundaries of XIMPEL when a
developer discards the hypermedia ideal and solely focuses on education. The implementation of the
command-line tutorial itself is a contribution to the XIMPEL framework, including its programmed
server. Moreover, there is an attempt to answer the question: when is something hypermedia and
when is it not?

In exploration 2 the future work that was presented in the thesis of Stefan Bruins [8] which is
creating a parallel player for XIMPEL. Bruins focused on the main question whether the XIMPEL
framework could be implemented with HTML5, CSS and JavaScript. In this exploration I focus on the
question on how to architect and implement a parallel media player within XIMPEL. The contribution
is an implementation and architecture overview of a parallel media player. Furthermore, the parallel
media player in XIMPEL creates new questions such as: what if a media item survives a subject
switch (called media item subject switch survival, i.e. MISSS)? Or: how does one do timescrubbing in
XIMPEL? These questions are explored in a new exploration.

In exploration 3 I assess whether XIMPEL can be recreated with ReactJS (a front-end JavaScript
library created by Facebook) in an effective manner. In this exploration I successfully and unsuccess-
fully recreate XIMPEL with ReactJS as opposed to plain JavaScript and jQuery. The contribution of
this is most of XIMPEL recreated in ReactJS and a relative full description of the creative process
of getting there. Another contribution is that this could be seen as a case study of how of observing
architectural patterns in the XIMPEL specification leads to finding a library that has more or less the
same patterns in its developer philosophy. It furthermore, implements ideas from almost all explo-
rations and has ended as a recreation of XIMPEL and also as my vision for XIMPEL, which is more
web-based than the current version®. For the attentive reader this is secretly both exploration 3 and
the final exploration because of the messy timeline. For naming purposes, it is called exploration 3
since it started as the third exploration and was the last to finish.

In exploration 4 I explore how to (semi)automatically detect frustration of users within XIMPEL
presentations. The contribution of this exploration is an implemented logging extension for XIMPEL.
The logging extension captures: facial expressions, mouse clicks, mouse moves and the history of what
the user already has seen. There is furthermore a conceptual description on how to detect frustration
specifically for the XIMPEL framework.

8While not described in this thesis, the positioning of media items could be done entirely with CSS. In the architectural
design I kept an eye out for CSS-support, but I was not fully aware of it that I did.

10

1. Introduction

In exploration 5 I wanted to implement a time-scrubbing mechanism, but slowely and surely I realized
that there are many twists and turns when it comes to time-scrubbing in hypermedia applications!
It suffices to say that architecting and implementing time-scrubbing for single videos is much more
straightforward than multiple videos (and other forms of media) that share a certain relationship with
the other media elements. The contribution of this exploration is an analysis of which design choices
one could possibly take in order to create time-scrubbing in XIMPEL. Analyzing these design choices
was equally rooted in: literature, rationality and imagination.
In exploration 6 I write about how I extend XIMPEL with one extra parameter in a method definition
and show how this extension can lead to some serious media type hacking for media type developers.
The whole chapter is written in story form, in order to not tire the reader out. To showcase this, I
implemented a YouTube media type that does not immediately detach from the DOM when a new
subject is clicked on. The contribution of this exploration is: (1) the introduction of a new concept
— partial subject refreshes known as media item subject switch survival (MISSS), (2) a showcase on
extending media types so that this functionality becomes available and (3) an implemented YouTube
media type that supports partial refreshes.
In closing, the structure of any exploration is as follows:

e short story what went through my mind,

e introduction of exploration,

e the exploration itself and

¢ conclusion and future work.

11

2

Exploration 1: creating a
command-line tutorial in XIMPEL

Looking at the structure of many MOOCs, it could be observed that they all have a simple video
playlist and then follow up with some multiple choice questions or a coding assignment within an
online code editor. XIMPEL has the ability to create videos through means of a playlist and is able to
create multiple choice questions. It does not have a code editor. The question arose: is it possible to
recreate a command-line tutorial with XIMPEL? Because if it is, then it will be a lot quicker to create
such an application compared to creating it from scratch!

On a related matter, with the implementation of a command-line tutorial, XIMPEL could compete
with computer science courses on Coursera. It could not compete on design but on pragmaticism, not
on flexibility but on programming simplicity, not on comprehensiveness but on development speed.
With this extension, XIMPEL occupies a unique niche of hypermedia and education.

By recreating a command-line tutorial in XIMPEL I stumbled upon a question. A command-line
interface is not a form of media. A command-line interface is an application. So by recreating this
in XIMPEL I am mixing a computer application with hypermedia. What does this mean? Am I
now leaving hypermedia? Are we mixing hypermedia elements with a computer application? Could
XIMPEL still be considered a hypermedia framework? Should XIMPEL be a hypermedia framework in
the first place? While it is clear that the advanced features of XIMPEL leave the realm of hypermedia,
it does so for a specific use case, which is gaming. Creating a command-line interface is not about digital
games, it is an application. Therefore, this is a philosophical design change to the framework, and
investigating it seems important to XIMPEL, but also to have a better understanding of hypermedia
in general.

The questions that I will formally focus on in this exploration are: how would XIMPEL need to be
extended in order to create a command-line tutorial? And what are the implications of mixing a
hypermedia application with another (non hypermedia) application with regards to hypermedia as a
field?

12

2. Exploration 1: creating a command-line tutorial in XIMPEL

Research Questions and Contribution

All research questions (1, 2 and 3) are relevant for this exploration. Most notably, question 1
and 2 are relevant regarding this exploration.

The first research question is: (1) how does XIMPEL need to be extended to contribute to
online education? A specific contribution has been made regarding online computer science
education. Creating a terminal media type helps computer science education and is a basic
skill set that computer science students need to learn. Furthermore, it is possible to learn many
more skills that computer science students could benefit from via the command-line such as
learning other programming languages. Finally, educators have the ability to set up very specific
programming environments that students do not need to install. By detailing the architecture
and implementation it helps for more developers to create a similar tutorial-like applications
since no clear guide seems to exist.

The second research question is: (2) what are the (technical and design) implications of parallel
media playback? In this particular case, it means that video is able to play alongside a command-
line tutorial. Furthermore, such an implementation is trivially simple to implement for XIMPEL
presentation (or application) authors.

Finally, (3) what areas of research could XIMPEL benefit from, and how? In this particular
case, the advantages and disadvantages are discussed of going beyond hypermedia. While not
discussed in this exploration, going beyond hypermedia positions XIMPEL as a framework to
remix the web through iframes (see the future work section of the discussion). This is especially
the case compared to other hypermedia frameworks. Custom media types such as a command-
line interface, contribute to this remixing of the web by allowing for more specialized content.

2.1 Extending XIMPEL to create a command-line tutorial

Did you know that the XIMPEL is an acronym for eXtensible Interactive Media Player for Enter-
tainment and Learning? Neither did I at one point. The extensibility of this media player will be
demonstrated here. Together with the core changes I made in the framework, it is even more extensi-
ble!

So is it possible to recreate a command-line tutorial with XIMPEL? The answer is yes. Our research
question has been answered. I suppose we are done.

Which command-line tutorial are we recreating you might ask? From CodeCademy.com of course! It is
one of the leading organizations for online programming education. To give a feel for how CodeCademy
looks like I recommend you to try the command-line tutorial yourself. For readers who are reading
this on paper, figure F.1 will show a screenshot from a part of the command-line tutorial.

When T first started recreating this command-line tutorial I realized two things. (1) It would be
interesting to see how such a tutorial would be with video besides it instead of text and (2) I did
not have time to recreate the whole tutorial so by using my artistic freedom I recreated the first two
lessons which are about how to use the pwd and the 1s command. By doing this the framework is going
towards online education. Media itself is in most cases already a form of education, but by creating a
command-line tutorial the XIMPEL framework moves more towards the interactive part of education.
The command-line tutorial requires two things. XIMPEL needs to be extended in order to play multiple
media types. It could be possible to create a media type that plays video and has a terminal emulator
which is too tightly coupled. This requirement necessitated exploration 2. The other requirement is
that XIMPEL needs to be able to have a terminal of some sort. In this exploration I will focus on how
I created a terminal application within XIMPEL, assuming parallel playback is possible.

13

2. Exploration 1: creating a command-line tutorial in XIMPEL

2.2 Architecture of the command-line media type

In order to create a proof of concept I started to reverse engineer how other command-line web
applications were created. I took a look at: R-fiddle and CodeCademy. I also took a look at JSfiddle
since I entertained the idea of executing JavaScript as a code tutorial. I quickly stopped entertaining
that idea when I realized I had to use the eval function and would create a whole host of additional
security hazards within XIMPEL.

R-fiddle has the following architecture: it has a client, a server and it communicates via websockets
(seen via Chrome Developer Tools). It spins up a virtualized container such as docker or vagrant in
order to minimize security risks such as a shell with too much privileges on a file system that has
sensitive information. By using virtualized containers for each new client, there is no file system with
sensitive information and the shell does not have too many privileges [22].

Codecademy sends an authentication token to a server along with other data via an xhr-request (in
JavaScript parlance: they use AJAX) and send other relevant data with it in order to manage at what
course the user is and if the user is logged in. The server answers back in JSON. Also Codecademy
uses websockets to communicate with a terminal application (see figure F.2). Presumably, they use
some form of sandboxing.

The common architecture in common with both websites are: client, server, websockets as communi-
cation and presumably sandboxing. So the first step I created was creating a command-line tutorial in
HTML/JS/CSS. Once that was completed I realized I needed to implement the client-side facing part
of the terminal as a XIMPEL media type. Moreover, that media type needs to connect via websockets
to a server.

The current implementation has its server-side part implemented in NodeJS with the web server micro
framework ExpressJS, which currently receives input data from the XIMPEL terminal media type via
websockets. It furthermore spawns a bash shell and sends the data back to the terminal media type.
Once it is there, the output of the bash shell will be displayed in the XIMPEL presentation. It has
to be stated that this implementation is a proof of concept. It is a prototype. Therefore, it is not
secure. The bash shell is not sandboxed with, for example, Vagrant or Docker. Figure F.3 illustrates
the client-server communication.

To conclude this section, creating a command-line tutorial has a couple of implications for XIMPEL.
First, a lot of server-side web technology needs to be added such as NodeJS, ExpressJS and websockets.
Furthermore, the devops tool Docker also needs to be understood. These web technologies are relatively
new and not understood by all web developers and also not all web developers of XIMPEL which makes
it harder to maintain XIMPEL. Second, it seems that XIMPEL is really suited for a micro service
architecture. The reason for this is mostly because some media types require a server. To have a
monolithic server for all possible media types in existence would harm the extensibility of XIMPEL,
with microservices this danger is mitigated. Third, it is the question whether creating it as a media type
is the way to go. XIMPEL also supports iframes, which means it could also have been implemented
as an iframe for more control over the terminal.

Finally to bring it back to education: XIMPEL its strength is in presenting non-linear paths, which
could also be done for command-line tutorials. A serious student could perform its own manual dynamic
difficulty adjustment by clicking the overlays which present possible harder or easier command-line
challenges. The non-linearity of hypermedia is so built into the framework of XIMPEL that the idea
is always a no brainer when one works with the framework. Yet, the idea of non-linearity is not
seen in other popular online educational websites which means that hypermedia frameworks have an
advantage in that aspect.

2.3 When is something hypermedia and when is it not?

Hypermedia frameworks claim to be frameworks for rendering media items to the screen. While this is
true, in the case of SMIL and XIMPEL they do much more. This is confusing, because two questions

14

2. Exploration 1: creating a command-line tutorial in XIMPEL

arise from this: (1) what is hypermedia? (2) Are SMIL or XIMPEL hypermedia framework or not?
With regards to XIMPEL the answer could be argued to be a clear no, since it is inspired by them
but it is not one itself. It could also be argued that it is a hypermedia framework at its core, but not
in its totality. SMIL 3.0 on the other hand is capable of interacting with parts of a web application
and partially also created parts of a web application (see [50] around minute 25, it is a video). If
all hypermedia frameworks are doing more than just enabling hypermedia content, then it needs to
be established what hypermedia is and what it is not. Being able to make a distinction in that
provides better vocabulary which aids categorical comparative analysis, much in the same way that
the distinction between gender or sex provides categorical comparative analysis (e.g. females compared
to males, two categories being compared). It may also shed light on the usefulness of non-hypermedia
elements in hypermedia frameworks.

To begin answering the question: in order to answer when something is hypermedia and when some-
thing is not, it must first be asked what it means for something to be media on a computer. A literature
search has been done, but unfortunately no relevant literature has been found. It is quite strange to
not find literature on a very basic question such as: “what is media?” or its more slightly complicated
version “what is hypermedia?”

The characterization of media falls into three distinct ideas, as I have seen so far: (1) mass media, (2)
computer (multi)media and (3) social media. Common examples for each three is common knowledge
for most people. For example, television, radio and the newspaper are seen as forms of mass media.
Video, audio, images and text are seen as fundamental forms of computer media. Coincidentally, the
two have a very strong mapping with each other. For example, text and images appear in a newspaper.
With social media, the notion of what media is becomes more vague. Social media can be characterized
as platforms where people are social on the internet. The usual suspects are: Facebook, Twitter and
Instagram, among others. But public internet forums, newsgroups or a guestbook could also be seen as
social media. In all of these cases it is possible for people to communicate with each other through the
use of computer (multi)media such as: video, audio, images and text (including emojis). Interactivity
is new here and that is because with the two more old-fashioned forms of media, it always was a one
way communication.

Up until this point it could be argued that computation and manipulation of digital objects — other
than writing text — do not need to be considered media. However, people call games media as well.
And in games, everything is possible!

For our purposes, however, the characterization of media will not contain computation. A spreadsheet
application is not a form of media and neither is a calculator. Other not media examples are: Finder,
my text-editor, the command-line, a web browser, TeamViewer, Evernote, my FTP program, my
mindmap editor, my colormeter, my screencast recording software, my vector graphics manipulation
tool, Unity3D, Java, Preview, a Git viewer, Activity Monitor, my time tracker and paintbrush. This is
more than eighty percent of my visible applications in my Mac OSX dock. Two applications could be
considered social media, which are Colloquy (an IRC client) and Slack. However, since the information
is not public (like guestbooks and forums) they may also not been seen as social media.

Finally, what all forms of media have in common is that they use the senses. For example, one hears
twigs cracking slightly, above the soft noise of a fuzzing wind; furry hairs and two humongous toes
are seen in the corner of an eye; a huge arm grabs your puny wrist in comparison and in a shock
you realize: “It is Bigfoot!'” If this would be a real experience, then it would not be (multi)media.
However, if this experience is fabricated through: screens, paper and other various forms of technology
then it is (multi)media. The multimedia researcher Anton Eliéns agrees with this idea. He says that
multimedia is everything that uses (sensoric) media experiences such as vision and sound [29].

So what is hypermedia? FEvery form of media that uses vision and sound and does not contain a
form of computation other than the computations that are relevant for displaying the media itself.
Furthermore, hypermedia is linkable, just like hypertext.

L As much as I love furry huggable creatures I do not believe in most of them other than teddy bears for sale at the
toy store.

15

2. Exploration 1: creating a command-line tutorial in XIMPEL

This means that by creating a command-line tutorial in XIMPEL, the framework has expanded beyond
hypermedia. It already has been expanded beyond hypermedia in recent editions by having iframe
support, so the idea that XIMPEL is only an hypermedia framework is not the case anymore.
XIMPEL is, however, mostly a hypermedia framework in its philosophy, since very little programming
knowledge is needed in order to create hypermedia presentations. For advanced XIMPEL users, it is
more than only hypermedia. It is possibly anything that a web application could be. But XIMPEL
does treat its extensions as media, even if it is an application like a command-line. This means that
every extension (application or media) is able to: play, pause, stop and resume. Since it is arguable
that XIMPEL is not a hypermedia framework the play, pause, stop and resume feature has less of a
justification as well.

The conclusion for this part of the exploration is an unusual one. It is strange to wrap web applications
like a terminal into custom media types. It does not seem useful to add multimedia features to this (i.e.
play, stop and pause functionality). While it is possible and it works relatively well, the play, pause
and stop functionality seems redundant. From a development point of view, it needs to be considered
to what extent stop, play and resume functionalities should be obligatory for media types. On the
other hand, a fairly easy solution is to leave an empty function body for the resume functionality.

A second conclusion is that the power of XIMPEL is its playlist. For example, just by typing
<terminal> one is able to create a complete terminal experience! This idea sparked exploration
3: recreating XIMPEL with ReactJS of which the rationale will be discussed in its relevant chap-
ter (chapter 4). One of the ideas in ReactJS is similar compared to the XIMPEL playlist, which is:
everything is a component. Everything in the XIMPEL playlist is a component as well.

In closing, the distinction of when something is hypermedia or not justifies and delineates the relevance
of hypermedia frameworks. Hypermedia frameworks keep themselves relevant by having extensibility
with application components or interactibility with application parts of any platform it resides on.
Furthermore, hypermedia frameworks with extensibility in mind seem not to trade any performance
penalty compared to pure hypermedia frameworks, other than losing development and design focus on
hypermedia features. However, a not well-known trade-off is that by doing this, a hypermedia frame-
work becomes more complex and one could study whether it is not pedagogical to keep hypermedia
frameworks simplistic, or fork hypermedia frameworks to keep the forked version simplistic. In this
section it has been found that sticking too much to the hypermedia ideal harms extensibility. An
unexpected conclusion is that the power of XIMPEL is in its playlist. Hence exploring this question
led to the exploration of a software engineering question described in chapter 4.

2.3.1 Conclusion

How would XIMPEL need to be extended in order to create a command-line tutorial? A server-
side architecture needed to be researched, implemented and a parallel player needed to be created (see
chapter 3). This changes XIMPEL from being a front-end framework built with hypermedia philosophy
to being a full-stack framework built with a hypermedia philosophy. It is perhaps obvious that the
relationship of XIMPEL pertains to online education. What is perhaps less obvious is that XIMPEL
can also pertain to offline education, by easing students into environments where they do not need to
install anything. They simply need to watch or interact with a XIMPEL presentation or XIMPEL
application.

In retrospect, while this shows the extensibility of XIMPEL, there is a much simpler way to do this.
Unfortunately, the idea does need to pop in my mind for me to realize this on time, which did not
happen. The idea is: it is possible to use the <iframe> tag to link to any service that provides an
online terminal, such as [2] which emulates the x86 processor and allows to run Linux purely on the
client. Therefore, it could have simply been implemented via the <iframe> tag and a 3rd-party service.
Moreover, this leads to the realization that ever since the <iframe> tag has been added, it generalizes
the <youtube> tag and makes it more or less superfluous. To think of a <youtube> tag as a video tag
would be wrong. It is a 3rd-party service that happens to provide video. The fact it is a 3rd-party
service is more important. Tags that stay relevant are tags related to local: text, images, video and

16

2. Exploration 1: creating a command-line tutorial in XIMPEL

audio. These stay relevant, because it takes more work to implement them via an iframe, compared
to typing <video> and filling in the respective attributes of it. In that sense, media types should be
seen as primitives. The <iframe> tag, while more advanced, is part of these primitives. Knowing this
earlier would likely have meant that this exploration would be about remixing the web with iframes
instead of architecting and implementing a terminal media type.

Does XIMPEL need to have custom media types at all? Why not just use an iframe? Potential
downsides of iframes are: responsiveness (media queries need to be added), bookmarking the iframe
only, not knowing whether a bug is in an iframe or the actual page and possible SEO issues. Most
of these issues do not apply to a XIMPEL application that much. The only reason for which custom
media types could stay is to have a very fine-grained control over a certain form of media. For example,
the Youtube media type could have a pre-loading feature, which is likely harder to achieve by using
an <iframe> tag within a XIMPEL playlist.

Another conclusion relates to the question: what are the implications of mixing a hypermedia ap-
plication with another application? It leads to the realization that a pure hypermedia approach has
more disadvantages than advantages. This furthermore means that research should be done into the
interplay of hypermedia and non-hypermedia elements in a hypermedia framework. Many hypermedia
or hypermedia-like frameworks are use-case driven. As future work, an exhaustive literature review
of comparing hypermedia frameworks and its use cases, will shed light on a possible more abstract or
generic classification of topics for which hypermedia frameworks are useful for.

17

3

Exploration 2: extending XIMPEL
for playing media types
concurrently

While reading Stefan Bruins his thesis [8] I detected a form of sadness in it, a regret perhaps. There
was a longing to play media items in parallel. Everything was set for it: the architecture expected
it, Stefan wrote about it in his thesis and even in the comments of the XIMPEL source code it was
written about. However, it was not there. And in a pirate voice I would like to say: Fortunately, it is
I, Melvin Roest who has read his thesis and is excited to continue his work! Let’s continue in a normal
tone.

Let’s start from the beginning: Bruins explored in his thesis whether XIMPEL could be ported to the
web without the use of plugins like it was programmed in the past (with the Flex SDK, AS3 and Flash).
In other words could it be ported to the web with: HTML5, CSS and JavaScript? The answer was a
resounding yes [8]. Bruins also suggested future work to be done on the XIMPEL platform. One of
the most prominent examples is the creation of a parallel media player. XIMPEL has been architected
with a parallel media player in mind. Therefore, programming a parallel media player will give an
even more conclusive answer to his research question of how one can be programmed. Furthermore,
implementing a parallel media player will allow us to have a closer look at possible technical difficulties
regarding HTML5 and attempting to play multiple videos in sync.

On another note, creating a parallel media player gives much more insight as to what hypermedia is.
Simply creating a framework that plays one media element at the time is a rather limited experience
in the form of hypermedia. Creating a parallel media player for XIMPEL would mean that more video
and audio and custom media types could be played (note: it was already possible to display multiple
images and text via the overlay mechanism and there was iframe support). Parallel media playback
is possible in SMIL since version 1.0. However, SMIL and other hypermedia frameworks do not seem
to offer a plugin like extensibility which means that the implications of parallel media playback and
application media types (e.g. <terminal>) are left unexplored.

18

11

13

15

3. Exploration 2: extending XIMPEL for playing media types concurrently

Research Questions and Contribution

In this exploration the main question has been: what fundamental future work regarding hy-
permedia exists regarding XIMPEL? The answer to that has been obvious from the start. The
answer is: parallel media playback. This means that the question implicitly transforms into an
implementation question of: what are the technical challenges to create parallel media play-
back? It relates to research question 2 in the sense that an implementation of parallel media
playback directly gives a surface level answer on the technical implications of parallel media
playback. Remember, research question 2 is: “what are the (technical and design) implications
of parallel playback?” The implementation issues of creating such a feature sets up the stage in
order to be able to conceive an answer regarding the technical or design implications regarding
parallel media playback.

For comparison, in exploration 3 a different approach has been taken to uncover the technical
challenges of parallel play. The architecture of exploration 2 has not been used as a reference.
Despite that, there are similarities regarding the implementation of the parallel player.
Parallel playback is a necessary condition in order to have more expressive power regarding
online education content creation. The implemented solutions in exploration 1 and 6 depend
on parallel media playback. Exploration 1 and 6 both have their own contributions to online
education. Without parallel media playback this would not have been possible.

Contributions of this exploration are (a) a simple check on the claims of previous work by
Bruins [8]. One minor claim by Bruins turned out to be false. (b) A description of the
implementation on parallel media playback in XIMPEL. (c) An actual implementation (see
Github [86]). (d) Setting up the necessary foundation in order to ask research question 2. From
a research standpoint the contribution is very humble since parallel media playback exist in
other hypermedia frameworks. However, (e) the architecture of this particular kind of parallel
media playback is likely to be different, which adds to the body of knowledge regarding software
architecture and parallel media playback in hypermedia frameworks.

3.1 Architecture of parallel playback

By looking at the architecture of XIMPEL and how the sequence player was implemented, implement-
ing a prototype of the parallel player has been more doable than without it. However, there were a
couple of caveats in the original architecture of XIMPEL as stated in Bruins his thesis (see figure F.4).
First of all, the figure suggests that a SequencePlayer is able to play another SequencePlayer. After
testing the following playlist (see playlist 3.1) this is demonstrably false. Fortunately, it is false because
there is no need for a SequencePlayer playing yet another SequencePlayer that will then play media
types in sequence. The reason is: one SequencePlayer already plays media types in sequence!

<ximpel>
<config>
<enableControls>true</enableControls>
<controlsDisplayMethod>overlay</controlsDisplayMethod>
</config>
<playlist>
<subject id="lessonl">
<sequence>
<sequence>
<message text="hey" />
</sequence>
</sequence>
</subject>
</playlist>
</ximpel>

19

11

13

3. Exploration 2: extending XIMPEL for playing media types concurrently

Playlist 3.1: This playlist contains a nested sequence tag and therefore does not work. This
demonstrates that the architecture in figure F.4 as outlined in Stefan Bruins [8] his thesis (fortunately)
does not work as described.

<ximpel>
<config>
<enableControls>true</enableControls>
<controlsDisplayMethod>overlay</controlsDisplayMethod>
</config>
<playlist>
<subject id="lessonl">
<sequence>
<message text="hey" />
</sequence>
</subject>
</playlist>
</ximpel>

Playlist 3.2: This playlist does work and serves as a counter example to playlist 3.1 which has a
nested sequence tag.

The current architecture has been updated to reflect the implemented changes as well as the inten-
tion of XIMPEL (see figure F.5). In its current architecture the XIMPEL player always calls the
SequencePlayer. And a SequencePlayer can either call a ParallelPlayer or a MediaPlayer. A

MediaPlayer plays a MediaType (e.g. video or audio). A ParallelPlayer plays multiple SequencePlayers.

By doing it this way it is possible to allow nesting of parallel tags. In some cases nested parallel tags
is desirable since at every level of the multimedia presentation an author will able to decide which
parts of the presentation have to play in parallel and which parts of the presentation have to play in
sequence.

These players have corresponding models. So a SequencePlayer plays a SequenceModel, a ParallelPlayer

plays a ParallelModel and a MediaPlayer plays a MediaModel. From MediaModels, MediaTypes are
constructed.

The extensibility of XIMPEL and playing media types in parallel allows for one unexpected idea: one
can extend XIMPEL with applications that are not multimedia. This question has been explored in
another part of this thesis (see chapter 2).

3.1.1 Implementation of parallel playback

For the architecture of any player in XIMPEL (e.g. a parallel, sequence or media player) there is a
pipe line. (1) It starts with parsing the XIMPEL playlist, which is in XML. (2) The data parsed by the
XML syntax get put into an in-memory configuration object, which holds the details of the XIMPEL
playlist. (3) The player itself uses, in most cases, a subset of the in-memory configuration object?.
Each individual part of the pipe line is explained in its own section.

3.1.1.1 The parallel player and parsing

The first part of implementation that needed to be programmed was the parser. The parallel player
needed to be registered as a valid child, since it otherwise would refuse to parse the <parallel> tag.
In the processSubjectNode method the processParallelNode method is called which will return a
parallel model. Such a parallel model is part of the in-memory configuration object. The method will
determine the info of the <parallel> tag (e.g. its parent and children) which is needed to loop through
its children. While looping through its children, the method will determine whether this particular

1Since the whole object is the complete playlist, so a part of the in-memory configuration object it is the relevant
part of the playlist that needs to be played

20

3. Exploration 2: extending XIMPEL for playing media types concurrently

<parallel> tag has: <sequence> tags, <media> tags or custom defined media type tags. It will then
add those to the parallel model.

3.1.1.2 The in-memory configuration of the parallel player

The ParallelPlayer uses a ParallelModel. The ParallelModel itself is nothing more but a glorified
array, as of now. It has a property called 1list. It also has a method called add, which means: add
the children of the <parallel> tag to this list. These children are wrapped in a SequenceModel or
MediaModel depending on what type the child is. It furthermore inherits the get and set method
from ximpel.Model. The methods and variables in every method are completely identical to the
SequenceModel. It only differs from the SequenceModel with the idea that the playing order of the
ParallelModel is to play everything at once, instead of in a default or random sequential order.

3.1.1.3 The parallel player itself

The major code revisions were regarding the SequencePlayer and creating the ParallelPlayer itself.
XIMPEL always has a top SequencePlayer (i.e. the SequencePlayer), it needs to be aware of how
to start a ParallelPlayer. For example, when the SequencePlayer needs to stop it also needs to
stop the MediaPlayer and the ParallelPlayer. Another example is that there needs to be a method
in the SequencePlayer to play a ParallelModel. All the method really does is passing it on to the
actual ParallelPlayer, but the SequencePlayer still needs to know about it.

The implementation of the ParallelPlayer itself is inspired by the SequencePlayer. Unlike the
SequencePlayer which plays media types in sequence, the idea is to play everything all at once.
The architecture of XIMPEL already allows for players to start playback for other players. In the
architecture outlined in figure F.5, a ParallelPlayer will have multiple players as its children of some
kind.

The ParallelPlayer holds a players array. These players can be either a SequencePlayer or a
MediaPlayer. Since these players follow the same API, it is not always needed to distinguish what
player is playing something. Just like the SequencePlayer, the ParallelPlayer has a playbackController ()
method. In the SequencePlayer this controller keeps track of which media item is played at this mo-
ment. The playbackController () method in the ParallelPlayer starts parallel playback of all
SequencePlayers and MediaPlayers if it is not in a playing state. It furthermore attaches event
handlers to all players to listen for when they stop playing their respective SequenceModels and
MediaModels. This event handler is called handlePlayersEnd (). At every call the playbackController ()
checks how many media items already stopped playing, and does not play if, for some reason, all media
items are in a stopped state.

For all the other functionalities the core idea of the ParallelPlayer is that all SequencePlayers
and MediaPlayers need to be: played, stopped, paused or resumed. In other words: everything a
normal SequencePlayer or MediaPlayer does, a ParallelPlayer does too but then for multiple
SequencePlayers and for multiple MediaPlayers. The diagram below shows the new architecture of
XIMPEL on a high level including the newly implemented ParallelPlayer (see figure F.5).
Applying variable modifiers (i.e. scores with an arithmetic operation such as <score id="test"
operation="add" value="5" />) seems to work via their respective players. The only thing that
needed to be added was that when a MediaPlayer would call its play () method, an applyVariableModifiers()
method needed to be called in order to apply the scores that were in the MediaModel of the respective
MediaPlayer. During manual testing regarding this feature, no bugs were found.

3.1.1.4 Testing and debugging the parallel player

Formal testing methods have not been used. The method that has been used is creating difficult
playlists such as the playlist in appendix C. However, it seemed that this was not enough. What really
helped to make the player more robust is by stretching XIMPEL to its limits. This has been done in
exploration 7, an exploration outside of the scope of this thesis (see appendix A). In this exploration

21

3. Exploration 2: extending XIMPEL for playing media types concurrently

a Turing Machine has been created, as well as a simple shooter game and an incarnation of Flappy
Bird. By stretching XIMPEL to its limits and trying to use it for purposes other than its intention
(i.e. creating a Turing Machine), some critical bugs of the parallel player became very clear. These
bugs have been resolved, and this chapter has been updated to reflect the implementation changes.

3.2 Conclusion

Parallel media playback works and other than the bugs written about, no issues have been observed as
of yet. Other designs were possible but they have not been investigated. On another note, the creation
of the parallel player allows for parallel playback, which allows the terminal media type of exploration
1 to be used in a much more useful manner since it is now possible to add video playback with it.
Parallel playback allows for multiple media items of the same or different media types to complement
each other through the ways such media items present their information.

However, such a conclusion is too short to be satisfying. Moreover, since this thesis is an explorative
one it may be fruitful to know how far we have come. So in the remainder of the conclusion we are
going to take a step back.

Since exploration 1, I started with the question of how XIMPEL and education relate and how it needs
to be improved, I now stumbled upon a new question. What are the implications of parallel media
playback? It is mostly the latter question that will be answered in the remainder of these pages. This
is not because I wanted to answer it, it is because I stumbled upon many questions and issues going
forward with parallel media playback.

Let us look in the future regardless. The ParallelPlayer has a lot of implications such as the user
need for a media item surviving a subject switch (MISSS) when a user jumps to a new subject (see
exploration 6) or the implications for time scrubbing are so numerous that it poses serious design
issues (see exploration 5). The biggest implication of all is that everything is a lot less complicated
when the developer only has one playing media item at a time to worry about instead of as many as
a ParallelPlayer allows. Currently, XIMPEL is now able to play playlist C.1, which is in appendix
C, which means it is able to play parallel media.

Let us look at the next exploration. Exploration 1 sparked exploration 3, porting XIMPEL to React. So
for the next exploration, ideas about parallel media playback will be ported. However, this exploration
will not be used as a basis. The programming philosophy in exploration 3 is too different. The
implications regarding parallel media playback of this particular version of XIMPEL will come back
in exploration 5 and 6.

So dear reader, I now give you a choice. Explorative reading is an art in itself as well.

Option A: You can either start reading exploration 5 and 6 if you want to know more about parallel
media playback.

Option B: Or, you can start reading exploration 3 and read how I recreate the majority of XIMPEL
with ReactJS and show how this particular library speeds up development.

The choice itself centers around the following question: do you want to thematically read all the
themes in such a way that it is easier to digest? Choose option A. Do you want to read how the thesis
happened in chronological order? Choose option B. Regarding option A, it is my suggestion to read
the thesis in the order of: exploration 5, exploration 6, exploration 4 and exploration 3. Exploration
3 and 4 could be swapped since it is exploration 1, 2, 5 and 6 that are thematically linked. Regarding
option B, I would like to remind the reader that the correct chronological order of how the explorations
have been done are: exploration 3 (read only until the first subsection), exploration 4 to 6 and back
to the rest of exploration 3.

Addendum. As an added bonus there is now a seventh exploration to be read, see appendix A.

22

Exploration 3: assessing the

benefits for porting XIMPEL to
React

This chapter was originally named as Exploration 3 (part 3): assessing the benefits for porting XIMPEL
to React. This has confused some people reading my draft versions. Why would a chapter start with
part 3?7 There is of course only one sensible explanation: part 1 and part 2 — also described as first
attempt and second attempt — have been kidnapped. On a more serious note, the relevant elements
of part 1 and part 2 are in this chapter as well, but it is part 3 that presents how XIMPEL could
be effectively and efficiently be ported to React. In the first attempt, the port failed. In the second
attempt, the port succeeded, but the architecture had too many issues. Moreover, it was observed that
the architecture could be heavily improved by (interestingly) simplifying code, a lot of deep recursive
calls have been removed. In an attempt to preserve how the exploration went from a chronological
time line, the other two written parts are in the appendix.

With that said, ReactJS is hip, new and shiny. It introduces a relatively unknown paradigm to web
developers called reactive programming. I wanted to work with this library because the web community
seems to settle on this as a best practice for creating the view layer of web applications. Moreover, if
my thesis supervisor can demand that I work on his framework pure for promotional reasons, then I
can decide I learn a new framework for self-promotional reasons. Later on I also justified the use of
React academically but I do not want to shy away from the inherent selfishness that academia has. If
science is a form of truth discovery, then the truth of its process should not be hidden.

Related to this is that I wanted to create the same type of exploration that Stefan Bruins did. If
Stefan Bruins can port XIMPEL to JavaScript and call it academic, then I can do the same for porting
the JavaScript version of XIMPEL to React. I believe in both cases the research question of “is it
possible?” could be answered a priori with a “yes.” However, like Stefan I am an empiricist and the
strongest form of evidence is through physical demonstration. Moreover, I altered the research focus
to whether XIMPEL written in ReactJS (from now on called XIMPEL React) has more advantages
than XIMPEL written in JavaScript 4+ jQuery (from now on called XIMPEL JS). That answer is a
lot tougher to answer a priori and hence an actual implementation, including a write up of the whole
implementation experience is needed.

On another note, this started out as exploration 3, but part 3 of the exploration occurred later than
exploration 4, 5 and 6 (addendum: not later than exploration 7, which was outside the project scope
of this thesis, see appendix A). Therefore, part 3, the successful port including a decent architecture,
could also been seen as the final exploration.

The reason this exploration started in the first place is because XIMPEL shares an idea that ReactJS
has as well. They both have components. XIMPEL has it in the form of a playlist, where every
component could be seen as a sort of invocation towards execution of the actual component. It is
analogous to a function invocation and function definition. ReactJS is not bounded by a playlist, it
has components everywhere; it also has the idea of component invocation and component definition,

23

4. Exploration 3: assessing the benefits for porting XIMPEL to React

like XIMPEL. Figure F.6 shows this thought. I was able to observe this, because I used ReactJS at
the coding school I taught and had some understanding of how it worked, when one day looking at a
XIMPEL playlist and React at the same time, it is hard not to make this observation. If I had not
known ReactJS beforehand, I doubt that I would be capable of making such an observation.

My questions specifically regarding this exploration are: is it possible to make use React and its
ecosystem to port XIMPEL to React efficiently and effectively? Moreover, what are other possible
benefits or disadvantages regarding this port?

For porting XIMPEL to ReactJS I expected apriori that it had the following advantages:

o A lot of parsing logic could be done via ReactJS and Webpack! by transforming the XIMPEL
playlist to a declarative language that is completely compliant with JSX?2. So there is no need to
create a parser.

e The virtual DOM would replace the in-memory configuration code that has been written for
XIMPEL. So there is no need to write in-memory configuration code.

e Cross-browser support is suddenly managed by the maintainers of the ReactJS framework.

¢ By teaching XIMPEL to students, it is needed to teach about ReactJS to students who want to
extend XIMPEL. This introduces them to some of computer science concepts implicitly.

In short, the idea was to see if it is possible to make the ReactJS framework work for us. If this is
possible, then we as XIMPEL developers have a free lunch! Who does not want a free lunch? Bagels
are on mel!

To validate these assumptions, I made a very simple prototype of creating a custom React component
in an XML file. The XML file would be read in by a React class that I programmed. What I found is
that this exploration failed so dramatically that for more than 6 months I believed to have invalidated
most advantages. You can read a full write up of the failure in appendix D.

However, by writing the chapter 6 months later, I was forced to take a closer look at the source code.
Because I needed to look at the source code, I needed to look at the dependencies. And when I looked at
the dependencies, I noticed that the XML parser of Webpack uses a library in order to parse the XML.
It may seem silly, but at the time I believed Webpack had innate code for doing this task. Knowing this
was a library, there seemed to be a small detail that I missed. Upon further inspection, this dependency
of the XML parser of Webpack showed that the XML parser was configurable! Unfortunately, T did
not see this before. So I could do a lot more in my second attempt, which is described in the next
section.

IThe following quote is from https://github.com/webpack/webpack: “Webpack is a module bundler. Its main
purpose is to bundle JavaScript files for usage in a browser, yet it is also capable of transforming, bundling, or packaging
just about any resource or asset.”

2HTML-like syntax that describes a user interface and is transformed to pure JavaScript, see https://reactjs.org/
docs/introducing-jsx.html

24

https://github.com/webpack/webpack
https://reactjs.org/docs/introducing-jsx.html
https://reactjs.org/docs/introducing-jsx.html

4. Exploration 3: assessing the benefits for porting XIMPEL to React

Research Questions and Contribution

All research questions (1, 2 and 3) are relevant for this exploration.

The first research question is: (1) how does XIMPEL need to be extended to contribute to
online education? This exploration contributes in that regard by being as educationally useful
as the default implementation of XIMPEL. The extra way in which the React implementation
is useful is that it could prompt students to learn about React and code reusability — since code
reusability is a big design philosophy in React. Furthermore, by having 2 implementations,
students will more likely understand the role of XML, since it is easier to see that XML first
needs to be interpreted. Moreover, the biggest two contributions are that hypermedia may now
be easily ported to mobile and the longevity of the XIMPEL project may have increased because
of creating a hedge between plain JavaScript and having an implementation in ReactJS. The
codebase of XIMPEL is small enough to keep it maintainable. Finally, by showing that XIMPEL
can be ported in a quick fashion means that it is able to have an up to date implementation
for the years to come.

Research question 2: (2) what are the (technical and design) implications of parallel media
playback? Since XIMPEL React has its own form of parallel media playback, it contributes in
the same way as exploration 2 does. This means that: the implementation issues of creating
parallel media playback sets up the stage in order to be able to conceive an answer regarding
the technical or design implications regarding parallel media playback. It has to be noted that
creating parallel media playback in XIMPEL React has been much more straightforward.
Research question 3: (3) what areas of research could XIMPEL benefit from, and how? This
exploration allows the reader to compare two implementations against each other. In this
sense XIMPEL JS acts as a control and XIMPEL React as an experiment. Furthermore,
this comparison is partially done in exploration 3 itself. The discipline that this particular
exploration benefits from is the academic discipline of software engineering.

4.1 Webpack XML parser setup

There were two modifications that allowed for a much more successful exploration compared to the first
attempt. First, I modified the parser to have an explicit tree structure by preserving order between
siblings and parent-child relationships. In general, it is the question whether an XML document needs
this type of order preserved since some XML documents could be treated as an unordered set.

For XIMPEL, it is needed that the XML document would be parsed as an ordered array. This feature
gives more power to the programmer, in the same sense that a Turing complete system has more
computational power than a finite state machine. Without order there is chaos, and in this particular
case there would sometimes be no way to determine which media item (such as a video or image) or
subject should be loaded first.

The second modification helped a lot in code readability. While it is not as game changing or ground-
breaking as the first, code readability is a necessary requirement for a fruitful collaboration on any
software project. For example, the default setting to denote attributes of a parsed XML tag itself was
$. To denote inner text it was _. And children was $$. I renamed this to: attributes, text and
children respectively.

The parser in XIMPEL JS is 812 lines of code. This particular setup is 15 lines of code and works just
as well. For this particular part of the port, ReactJS including its ecosystem (e.g. Webpack) definitely
wins. While a similar library could have been used for XIMPEL JS, the in-memory configuration
object still would needed to be written. In ReactJS this is not the case since React props handle any
passed XML data. The in-memory configuration object is 316 lines of code in XIMPEL JS, in XIMPEL
React, the React library completely handles that. Table F.1 shows the comparison. This particular
success has been made during the second attempt of porting XIMPEL JS to XIMPEL React.

25

4. Exploration 3: assessing the benefits for porting XIMPEL to React

4.2 Implementation methodology of the second and third at-
tempt

In the second attempt of this exploration I tried to explore if I could re-implement XIMPEL quickly
since the possibility of it is one of the main questions. I did not consider architecture, or even best
practices for programming React. 1 also did not consider the architecture or implementation of XIM-
PEL JS, in order to really test if ReactJS would help. This has led to quite a bit of technical debt.
Creating technical debt has also been done in order to find out what architectural patterns work and
which does not. Iterative development, therfore, has been a conscious choice. Another reason to cre-
ate technical debt is because I follow the programming philosophy of Jonathan Blow, which is: try to
produce as fast as possible and then when you hit performance bottlenecks or any other bottleneck of
any kind, only then try to be smart about solving that bottleneck. In some of his YouTube videos he
goes in-depth how the code that he created for his award winning games like Braid and The Witness
only have 6 to 10 percent of optimized code 3. It has also been done in order to find in which regards
one needs to fight the React framework and in which cases React gives the developer wings to fly and
develop certain features of XIMPEL a lot faster.

This approach worked. However, while it worked it did create an issue too big to ignore when it came
to infinitely nesting the media tag (which replaces the <parallel> tag, making parallel playback the
default option) and the <sequence> tag (which allows for sequential play)*. Since infinitely nesting
parallel and sequential play is a feature essential to any hypermedia framework, I decided to revise
the architecture on the best practices of ReactJS. This also meant that I almost completely restarted
from scratch, except for the Webpack XML parser setup, which is exactly the same. The write up of
my second attempt is also put in the appendix which can be read in appendix E. This write up is not
complete. The incompleteness shows the sudden transition to the third attempt. Besides the necessity
of revising the architecture and learning more about the best development principles regarding React,
I still had the same programming philosophy in mind inspired by Jonathan Blow.

To summarize, there have been three attempts in porting XIMPEL to ReactJS. The first attempt did
not go anywhere (see appendix D), the second attempt did but had an architectural flaw (see appendix
E) and the third attempt has an architecture that is clear and one that works. The third attempt
will be exclusively presented in the next sections (without the first and second attempt). The final
two attempts do have a couple of things in common (e.g. overlays, Webpack setup and data flow
philosophy). So some paragraphs in the appendix are the same as they appear in the chapter here.

4.3 Designing XIMPEL React

While porting XIMPEL JS to XIMPEL React, I decided to leave some features out. I did this in the
interest of time and in the interest of vision. The requirements of a fixed width and height 1920 by
1080 has been dropped. This is because there is more focus on displaying (hyper)media than XIMPEL
being an interactive video player. The <quiz> tag has been left out since it can be modelled already
through other language constructs that XIMPEL provides. More importantly, prominent XIMPEL
authors do not use the tag and they model quizzes with overlays®. One way to model it can be seen
in figure F.16. The playback bar on the bottom which ahs the pause, stop and play functionality
has been dropped, because there has been some indication by students and the observations of Hugo
Huurdeman that these features make users assume that time scrubbing is an available feature, leading
to Ul-frustration. Moreover, they are not used much, if at all. The error message system has been
altered as well. Tags that are not allowed are shown as an error message on the page, because not
every XIMPEL author knows about the JavaScript console. Unknown attributes are not shown as

31 forgot which video, but here is his channel: https://www.youtube.com/channel/UCCuoqzrsHlwv1YyPKLuMDUQ.

4The rationale of this design change is explained later on.

5When looking at all playlists for all showcases on https://www.ximpel.net/showcase, it is visible that all quizzes
are implemented through overlays.

26

https://www.youtube.com/channel/UCCuoqzrsHlwv1YyPKLuMDUQ
https://www.ximpel.net/showcase

4. Exploration 3: assessing the benefits for porting XIMPEL to React

an error message, it would be more productive to do so but experienced authors can find these bugs
quite quickly and inexperienced authors learn a thing or two about debugging. This is an educational
experience that every XIMPEL author should be familiar with. In this sense the XML language of
XIMPEL React tries to be pedagogical, just like XIMPEL JS but to a slightly further degree.

Every exploration that I wrote contributed at least a small feature to XIMPEL React, most of which are
also in XIMPEL JS. The ability to play parallel media (exploration 2), integrate a terminal (exploration
1), log user data and capture their facial expressions (exploration 4), media items surviving a subject
switch (MISSS, see exploration 6) and even simply leaving the time scrub bars in for audio and video
(inspired by exploration 5, this feature is not in XIMPEL JS).

The process of the design happened intuitively. The requirements of porting are quite clear and so is the
problem definition regarding re-implementing XIMPEL. Normally, the first major step is devizing the
architecture and I decided to program it iteratively. By programming an architecture iteratively, it is
possible to see what works and what does not work in earlier versions of XIMPEL React. Furthermore,
a lot of the design process also occurred by virtue of writing this thesis and revising this chapter more
than any other chapter.

4.4 Architecture

In this section it is described how the third attempt improved upon the second attempt from an
architectural standpoint, since improving and implementing the architecture is the biggest difference
between the two attempts. Then, a small explanation of some terminology known in compiler con-
struction will be added to our vocabulary in order to explain this architecture better. Then, the rules
of all components are described. While it is not a comprehensive rule list it does give a good idea of
what XIMPEL React is capable of on a per component basis. Describing rules on a per component
basis does not give the full picture, which is done in the subsequent sections.

4.4.1 Improvements compared to second attempt

The general idea of the architecture is that each XML tag has its own component. Every component
is responsible for rendering its own level, which is an improvement compared to the second attempt
where there was one top level component trying to render everything. For example, a media type like
the <image> tag would render its own image via the HTML5 tag. Intangible tags such as
the <sequence> tag would render as a <div class="sequence"> in HTML5. Another improvement
is regarding the in-memory configuration which is an object that is created by Webpack which parsed
the XML file. In the second attempt, the in-memory configuration consisted of actual React elements.
In the third attempt the program uses the parsed XML by Webpack as the in-memory configuration.
This eliminated a whole host of introspection issues since React elements (2nd attempt) are tougher to
inspect compared to an XML in-memory configuration (3rd attempt). One potential tried solution was
to stringify React elements to JSON and do a string match. This did not work, because a React element
has circular dependencies, which means the stringification to JSON will never complete. Contrast that
to parsed XML which had a #name property (the hashtag is not a typo it is part of the identifier)
which indicated the type of the parsed XIMPEL tag (e.g. audio®). A third improvement is regarding
the communication, which has been streamlined. Specifically, there are fewer publish(...) and
subscribe(...) calls.

6Indeed, it is with a lowercase a, React elements and components would be with an uppercase A but in XML form it
is a lowercase a

27

11

13

4. Exploration 3: assessing the benefits for porting XIMPEL to React

4.4.2 XIMPEL tags mapped to React component and the link to compiler
construction

To start off this section: consider the following excerpt of the De Zaanse Schans playlist (see code
section 4.3).

<ximpel>
<playlist>
<subject id="MenuDeBonteHen">
<media>
<video repeat="true">
<source extensions="mp4" file="videos/MenuDeBonteHen"/>
<overlay height="100px" leadsTo="WalkToHetJongeSchaap" width="350
px" x="200px" y="970px"/>
<overlay height="100px" leadsTo="QuizBonteHenIntro" width="350px"
x="800px" y="970px"/>
<overlay height="100px" leadsTo="TourOfMolenDeBonteHen" width="350
px" x="1470px" y="970px"/>
</video>
</media>
</subject>
</playlist>
</ximpel>

Playlist 4.1: An excerpt of the De Zaanse Schans playlist.

Every tag here as its own React component. The <ximpel> tag has the Ximpel component, the
<playlist> tag has the Playlist component and so on.

This design makes it possible to devise rules for every component, just like it is possible to devise rules
for every context free grammar (CFG) when parsing a programming language. Since a XIMPEL playlist
is a declarative language, borrowing conceptual ideas from syntax analysis in compiler construction
may prove to be useful for describing XIMPEL’s architecture.

A CFG has four elements to it. A set of non-terminals, a set of terminals, a set of production rules and
a starting symbol. Of relevance here are the ideas of: non-terminals, terminals and production rules.
Knowing which are which tells more about the architecture. These terms will not be used in a strict
sense, but the essence of these ideas will remain. When I clearly deviate from the strictness of one of
these ideas it will be written in advance. The idea of production rules will be renamed to component
rules since the rules of what every XML tag should do is encoded in the React component that maps
to it and strictly speaking they are not production rules (though they have some similarities).

The terminals are the easiest to understand: the media items displayed on the web page are the
terminals, such as a video element or audio element. These terminal symbols are not strictly terminals
in the CFG sense since they can nest elements as overlays and supporting elements (e.g. <source> for
the <video> and <audio> tag). They are terminating symbols in the sense that the endless nesting
stops and a media item will be displayed. Other terminating symbols are: <source> (as a part of
<video>) and <overlay> (as a part of any media type).

The non-terminating symbols are: <ximpel>, <playlist>, <subject>, <media> and <sequence>.
Writing a playlist with only these tags will yield in a meaningless playlist. The idea of non-terminating
symbols are that they eventually lead to terminating symbols and show the intention of the playlist.

4.4.3 Component Rules

The component rules are written per React component in the source code. For architectural purposes,
I will present the rules per component, but they may not be fully comprehensive. They will, however,
serve for having a strong understanding of the architecture underlying the code base. The rules will be
discussed from top to bottom. It is also possible to read from the documentation what the component

rules are”.

"See http://melvinroest.com/ximpel/documentation/ximpel_react.htm

28

http://melvinroest.com/ximpel/documentation/ximpel_react.htm

4. Exploration 3: assessing the benefits for porting XIMPEL to React

4.4.3.1 Ximpel

The Ximpel component checks whether the <ximpel> tag has been written.

It sees if there is a <playlist> tag underneath it and will output a warning on the page and not
render anything else.

It does not check if there is one <ximpel> tag.

4.4.3.2 Playlist

This component tracks which subject is being played.

It also tracks all the global media items (media items that survive a subject switch, i.e. a global media
type) and renders them if needed.

It initializes the logging framework the enableLogging attribute is set to "true".

It also has two subscribed methods in the publish-subscribe system that XIMPEL React uses.

It listens to any component publishing a topic on leadsToUpdate and it will update its own state to
render a new subject.

It also listens to when a Media or Sequence component signifies the topic of addGlobalMedialtem,
in which case it adds a media item to its own globalMedialtems array so the media item is able to
survive the subject switch.

It renders the global media items and the underlying <subject> tag. If no <subject> tag has been
specified it will display an error message on the page.

4.4.3.3 Subject

This component looks for the underlying <media> or <sequence> tag. If it is not there it will display
an error message on the page.

4.4.3.4 Media

This component plays media items in parallel.

It is able to render a <sequence> tag or any media tag.

It will give an error message if no media type tags or <sequence> tags are children.

It counts how many of its children have stopped playing and notifies this to the parent. This notification
is intended for the <sequence> tag. With it, the <sequence> tag knows that it is able to continue
playing the next media type or Media component. If the parent is a <subject> then this notification
is not relevant.

Before playing it checks to see if its first media item is a global media item. If it is, it will increment the
stop counter since the responsibility of a global media item does not belong to the Media component
but to the Playlist component.

When it renders a media tag, it also renders an element that tracks time for the media item as a
parent. As of now this is called MediaType but it may also be called MediaManager later on. Here is
a piece of example code.

<MediaType stopCounter={this.stopCounter} {...element.attributes} playlist={
element} key={this.state.key + i} render={mediatype => (

<Youtube {...element.attributes} mediatype={mediatypel} text={element.text}
playlist={element} />
)}/ >;

Playlist 4.2: An example of how each media item has a general component to manage itself for time
tracking (among other things).

29

4. Exploration 3: assessing the benefits for porting XIMPEL to React

4.4.3.5 Sequence

This component plays a media item (or <media> tag) one at a time and will go to the next one when
the duration of its current media item is finished. If a media item has no duration specified in the
playlist, this media item will be playing it for an infinite amount of time. A <media> tag does not need
a duration, it only needs to notify the Sequence component that it is done rendering all its children.
The <video> and <audio> tags are also an exception for this duration rule since they have a custom
handleEnd () method®.

It will give an error message if no media type tags or <media> tags are children.

It counts which child it is playing and whether it is finished playing.

When it is finished playing it will notify its parent that it stopped. This notification is intended for
the <media> tag so it knows that this component is done with rendering everything. If the parent is
a <subject> then this notification is not relevant.

When it renders a media tag, it also renders an element that tracks time for the media item as a
parent. As of now this is called MediaType but it may also be called MediaManager later on.

4.4.3.6 MediaType

The MediaType component is the only component that does not have a direct one to one mapping with
the XIMPEL playlist. This component demonstrates how the abstraction of a one to one mapping
from XML tags to React does not hold. The condition of grouping functionality of XML tags together
breaks the abstraction. This component applies to all media types and acts a manager for every media
type. All media types have a couple of requirements in common which is why this component was
created.

It tracks: duration, the amount of seconds elapsed, whether it has to render itself, it also tracks an
inner state of whether it should play and the underlying media type and when a media item needs to
start playing.

It is able to get information from the underlying media type regarding the amount of seconds elapsed.
This feature is also seen in XIMPEL JS, where it has been argued in the comments of the source code
that the video and YouTube API are better able to track time than the JavaScript implementation of
XIMPEL JS itself.

It notifies the Media or Sequence component when it stopped playing.

It renders overlays that are children of any media type tags. In the general architecture of XIMPEL
React it is a rule that an overlay can only be rendered by a media type.

4.4.3.7 Media Types

Most media types simply render themselves, take in the attributes of what was written in the playlist.
Video, Terminal and (in future work) YouTube have more than only a call to a render method.

All media types are able to render overlays and overlays are only allowed to be rendered as children
of media types.

The Video component also tells MediaType when it is done playing itself when it is not on repeat and
it gives a reference of itself to MediaType in order for MediaType to improve time tracking (e.g. when
a video is paused there is no time elapsing). The Youtube component could be programmed to do
these things too, but as of now this has not been done yet.

The Terminal component connects to a server that runs a bash shell and communicates via web
sockets. Because of this, it is able to handle form submission.

8In retrospect, I did not design this part of the architecture well. It is also evidence that I did not look at the
architecture of XIMPEL JS. Perhaps a similar approach could be taken that XIMPEL JS does. XIMPEL JS attaches
methods that handle ending events on the moment when a media item, or player starts playback.

30

4. Exploration 3: assessing the benefits for porting XIMPEL to React

4.4.3.8 Overlay

This component has a static variable called score which is an object that tracks all the scores that
are put as an attribute in the <overlay> tag.

It tracks its own time, except when MediaType passes down a reference of the HTML5 video player.
Then the time will be tracked for the overlay.

Other than tracking time it also tracks start time and duration.

It renders itself and has no children.

The most important feature of an overlay is that when it is clicked, it will publish a 1leadsToUpdate to
any subscriber willing to listen which is the Playlist component, since it will start rendering a new
Subject component, forcing a rerender of a whole new part of the playlist.

4.4.3.9 Rule

The rule component is the replacement of the <leadsTo> tag. It checks if a score is big enough in
order to do conditional rendering.

Rules are only possible to be nested in overlays.

The parsing of the if attribute has been directly copied and slightly modified from XIMPEL JS due
to its very specific use-case and specific syntax.

It is renamed to rule because creating a <leadsTo> tag is confusing since it is already available as
an attribute. Moreover, renaming it to <rule> showcases a more general intend that is made more
specific with the attributes if and leadsTo. Here is an example:

<overlay>
<rule if="{{baby_dolphins}} > 5" leadsto="lesson2"></rule>
</overlay>

Playlist 4.3: An example of how the rule tag looks like

4.4.4 Beyond the component rules

It is important to know that while these rules describe the components fairly adequately, two things
have been left unsaid. Certain edge case behavior has not been discussed and lifecycle management
issues that needed to be programmed against. An example of one edge case is that the logging
framework is written in ES5 and jQuery. Because of this the Playlist component needs to check if
jQuery exist and use it in order to attach the facial expression classifier part of the framework to the
DOM. Another example is key management, which is needed for many React components. If React
needs to use deep diffing into the DOM (one of the advantages of using React, performance wise),
then the lifecycle methods will be called at unfortunate moments. This is an issue if a new developer
does not understand key management and how it influences the lifecycle methods. Currently it is not
a problem anymore, but it used to big enough to mention it as a potential temporary drawback.

4.4.5 Data flow within XIMPEL React

The data flow within XIMPEL React tries to follow conventional ReactJS philosophy: try to have a
unidirectional data flow as much as possible. Which means data flowing from parent to child. However,
sometimes this is not possible. If a child gets a state change earlier which a parent also would need to
know, then it in some cases becomes difficult to do so. Conventional React best practice suggests to lift
state. However, this has not always seemed to be possible, but furthermore it makes code readability
worse.

For child to parent communication I used callbacks or render props (through which I could use call-
backs). For great great great ... great grandchild communication to the Playlist component I used a
publish subscribe library called PubSub.js [82]. Some people reading this may ask themselves why I did
not use the Redux library. The answer simply is: it was not needed. I know that a lot of developers use

31

4. Exploration 3: assessing the benefits for porting XIMPEL to React

the flux architecture for solving data flow communication issues, but this is only needed when current
data flow communication solutions become unwieldy. This is not the case for XIMPEL React. It may
be the case in the future, when the codebase passes 5000 lines or 25000 lines (who can tell?) and then
refactoring will be needed. T also did not use the PubSub library of XIMPEL JS, simply because I
prefer to concentrate open source efforts and the popularity of PubSub.js [82] is clear.

4.5 Conclusion

So who is hungry? It is about time to assess whether porting XIMPEL in React provides a free lunch!
The assessment works as follows. First, unexpected advantages and disadvantages will be taken into
consideration. Then, the expected advantages will be evaluated by asking: to what extent were the
expected advantages positive development factors in reality?

4.5.1 Unexpected advantages and disadvantages

The biggest downside of React was not the library itself but the learning curve of it. The fine-grained
understanding over the lifecycle and key management has produced hundreds of lines of code that
were ultimitaly unecessary and have been refactored out. Without this fine-grained understanding,
more control over the DOM would be nice, as well as knowing when the lifecycle methods would be
triggered. Fortunately, it was a learning curve issue and nothing else. For developers new to React
this will be a temporary drawback.

The pro’s of the React and Webpack combination were plentiful. One advantage mentioned earlier
is that React components map really well on XML elements of the XIMPEL playlist. Since the
component abstraction rarely breaks, it is fairly easy to reason what each XML element is responsible
for regarding which React component.

However, it did break one time. The MediaType component is not an XML tag. This indicates that
in XIMPEL a media item belongs implictly to a media type. It is the question whether this should be
implicit or not. By making it explicit by creating a mediatype tag, for example, the abstraction with
React does not break at all. This could be evidence for how the architecture plus the React framework
really forces us to stay consistent with mapping XML tags one to one with React components.
Another advantage that came to light later on was the lack of DOM manipulation needed. React does
this. Normally, a developer needs to be concerned about: state, rendering HTML (most likely with
jQuery) and when to render the HTML. With ReactJS the only concerns are having the right state
and rendering it, which simplifies reasoning about the whole application since the question of when to
render HTML is gone.

One future advantage is when XIMPEL or concepts like XIMPEL will be used for mobile applications.
React Native shares a lot of similar code with ReactJS and to port it over to mobile should be possible.
One interesting caveat is that mobile applications need to be reviewed by their respective app stores.
However, a playlist that is sent over the server does not need to be reviewed. So a technique to extend
an app is to create one’s own custom declarative language and load it in as a playlist, like XIMPEL
does. A related advantage is that it is almost within reach to create mobile apps with XIMPEL. The
framework has to be adapted to React Native, which has a lot of code in common with ReactJS, in
general.

4.5.2 Evaluating the expected advantages

The first pro is that a lot of parsing logic could be done with React and Webpack. This is true,
but interestingly enough, not by transforming the XIMPEL playlist to a language that is completely
compliant with JSX. Therefore, the expected benefit was right but the expected mechanism by which
it would be achieved was not. The XML loader of webpack had (in hindsight) a strong XML parser
that was a good library to use [54]. This parser created a workable in-memory configuration object.

32

4. Exploration 3: assessing the benefits for porting XIMPEL to React

Which brings us to the second pro. The virtual DOM would replace the in-memory configuration
code. So there is no need to write in-memory configuration code. While it has been tried to use
the virtual DOM to replace the in-memory configuration code, this has been tedious — this has been
done in the second attempt. As stated in the previous paragraph, the actual parsed XML tags were
used, which provided the in-memory configuration that was needed — this has been done in the third
attempt. Again, the expected benefit has been realized but the expected mechanism by which it would
be achieved was not.

The third pro is that cross-browser support is managed by the maintainers of the ReactJS framework.
This is unfortunately not entirely true since the logging framework has not been ported to React.
ReactJS itself support Internet Explorer 9 and higher through the use of some polyfills. It used to
support Internet Explorer 8, but it has discontinued support since the beginning of 2016 [1]. What
has not been taken into this consideration is add-ons such as the logging framework being written in
an older language.

The final advantage was a didactic one. Students who want to extend XIMPEL React need to learn
a thing or two about ReactJS. This in turn leads them to learn some computer science concepts. It
is hard to assess this potential advantage, but since I needed to brush up on my ReactJS skills, T
can review which programming concepts I have gained a better understanding of. These are: lifecycle
methods, diffing, performance between a virtual DOM and actual DOM, the DOM itself, some basics
of functional programming (I did not follow the course in my bachelor degree), the render and state
cycle, the lifecycle of a component (it is reminiscent of the iOS framework Cocoa and Cocoa Touch
which also has lifecycle methods) and key management (unique identifiers). It could be argued that
some of these concepts are also computer science concepts. Furthermore, students who want to extend
or play with the core of XIMPEL will learn a lot about web development. So with some certainty it
can be claimed that students who dive into the React version of XIMPEL will learn some additional
computer science concepts compared to XIMPEL JS.

4.5.3 Concluding the evaluation

In summarized fashion, the advantages of ReactJS are: no DOM manipulation, XML attributes easily
included as props (thanks to a combination of React and the XML parser), strong one to one mapping
to the XIMPEL playlist, cross-browser support, strong error reporting, a strong ecosystem, and porting
options to mobile and tablet. The strong one to one mapping to the XIMPEL playlist has been very
useful for development. Focusing on solely one tag and writing out the component rules for that tag
is helpful. Regarding the props of ReactJS, it has not been needed to attach the XML attributes to
anything, unlike in XIMPEL JS. The ecosystem of React is perhaps its strongest advantage since it
offered easy discoverability for libraries that saved a lot of time, such as the XML parsing library or
the ability to write ES6 with Babel. This means: less code to write, an architecture that is fairly
easy to reason about, maintainability out of the box and rapid software development options on other
platforms. This is a lot. A speculative advantage is that ReactJS might segment its position as a best
practice for the web.

The only downside is that people need to learn it and become proficient in it. Fortunately, the learning
curve should not be that high since XIMPEL React only uses ReactJS its core library and DOM library.
It does not use other popular libraries from the React ecosystem that invite a learning overhead (e.g.
Redux). Hence, the downside is relatively contained compared to other React applications.

Does this mean that we should abandon ship and stop the development of XIMPEL JS? Compared to
the development time of XIMPEL React, the creation of XIMPEL JS has also been realized relatively
quickly. While I do not have data on the matter, my guess would be that it has been made within
336 to 672 hours of development time. Bruins developed XIMPEL JS for his master thesis, and had
(officially) 1004 hours time for the whole thesis. The point is: that is still relatively quick.

As of now, XIMPEL React is a subset of XIMPEL JS and has a couple of different design decisions.
Therefore, no version of the framework replaces the other. The design decisions of XIMPEL React
easily shows whether the design decisions taken were a good idea. XIMPEL React has no: pause and

33

4. Exploration 3: assessing the benefits for porting XIMPEL to React

resume functionality on a per subject basis, quiz tags, constant dimensions (i.e. 1920 x 1080). Some
media items have rudimentary video and audio time scrubbing. Preliminary results show that: quizzes
can still be modeled; even quizzes with feedback and not having constant dimensions has consequences
of the positioning system in such a way that it is identical to positioning web elements. This makes
positioning a bit problematic, a proposed solution is in the future work section.

4.5.3.1 Architectural similarities between XIMPEL JS and XIMPEL React

One strong reason for making a strong decision for XIMPEL React is an architectural one. After
creating XIMPEL React, I observed that XIMPEL JS has an architecture that is quite close to the
architecture of XIMPEL React®. Interestingly, the idea of mapping one tag to one file or one object
type has not been explicitly mentioned in Bruins his thesis [8] because he framed the architecture in
a different manner. Nevertheless, that is more or less what he did.

In XIMPEL JS there is much more concern with a player, a sequence player, parallel player and media
player. These players do not have any UI logic, the counterparts in XIMPEL render a simple div.
It was surprising at all that XIMPEL React has counterparts! Furthermore, for most components in
XIMPEL React a similar JavaScript file has been found in XIMPEL JS.

In XIMPEL JS, every media type has its own file. In XIMPEL React, every media type has its
own component. The rendering logic in React is cleaner, because React is meant for such a task.
XIMPEL JS uses jQuery which works, but has worse code readability because the HTML-strings
cannot be syntax highlighted. In jQuery HTML-strings are simply seen as strings in JavaScript and
not as JSX like in ReactJS. Furthermore, they both have some form of code that manages shared
responsibilities of all media types. In XIMPEL JS this responsibility is shared between MediaType. js
and MediaPlayer. js, in XIMPEL React is called the MediaType component.

What does not exist in XIMPEL React is XimpelApp. js, mostly because it is not needed. There is
also no code registering the XIMPEL name space or media type registration. It might be needed, it
might not be. The XimpelAppView. js file has no counterpart, this file draws the video player-like UI.
In XIMPEL React it has been decided that such a UI created false expectations. It does not have a
View. js file because this file abstracts common view functionalities away for overlays and questions.
Since XIMPEL React has no questions, there is no need to abstract it away.

OverlayView. js is the Overlay component. And that is the whole comparison: players, media types
and overlays. Tougher to compare are: the Rule component and the scoring part in the Overlay
component. The scoring part in Overlay could have a better architecture in XIMPEL React and has
been added relatively quickly. The Rule component seems to have an equivalent in Player. js'C.

I have shown that there exists a rough one to one mapping between many React components and many
XIMPEL JS files. If there is not a one to one mapping, then there is a one to one mapping between
the concepts ReactJS uses itself or it simply was out the design scope of XIMPEL React. Therefore,
using ReactJS might be preferable, provided that the design changes are accepted by the development
team. A table which compares all filenames of XIMPEL JS to XIMPEL React components, concepts
and design decisions has been made (see table F.2). This table could also be consulted to compare in
what manner the functionality relates to each other in each codebase.

4.5.3.2 Features that still need to be implemented for feature parity

XIMPEL React has a couple of features that XIMPEL JS does not have, such as scrub bars on video
and audio media items. It also has a property that allows a mediatype to determine when it should
be played. In XIMPEL JS this issue is solved by using a media type called Filler.js and play
that for a certain amount of time to offset the starting time of when a media item could be played.
XIMPEL React does not have strong event handling for ending events which XIMPEL JS does have.

9Which is why this part is written in the conclusion, it strictly has been observed after the creation of XIMPEL
React. If it had not, then part 1 and part 2 of this chapter, see the appendices, would not have existed.

10Tt may seem that Model. js also seems to have a part of the Rule component. However, the functionality of Models. js
is simply taken over by React props.

34

4. Exploration 3: assessing the benefits for porting XIMPEL to React

The YouTube mediatype in XIMPEL JS has a mute attribute, which XIMPEL React does not have.
Most importantly XIMPEL React does not support touch gestures, which XIMPEL JS does.
Another functionality that XIMPEL React does not have is conditional subject rendering when a user
arrives at a subject. It only has conditional subject rendering when a user clicks on an overlay. The
same goes for scores setting scores or performing arithmetic operations on them, it only works when
a user clicks on an overlay. This design decision has been intentional in order to keep the language
minimal. However, in the extracurricular exploration (exploration 7, see appendix A), it has been
demonstrated that these language features are needed.

All other features have either been intentionally designed away or built. It seems that XIMPEL React
is not a pure subset of XIMPEL JS because of its own unique features and seems to have nearly all
features regarding its own design goals. See section 4.3 to read how XIMPEL React differs in its design
from XIMPEL JS.

4.5.3.3 In closing

This exploration is a final exploration in disguise. Since it had three attempts, only the first attempt
was the actual third exploration which is now in appendix D. The second and third attempt can
be seen as the seventh exploration respectively. When I ported XIMPEL to React successfully in my
second attempt and fine-tuned it in my third attempt, the first rough draft of everything (including this
chapter) was already written and everything else was already programmed. So other than an assessment
to see whether XIMPEL could be ported to React, this port also showcases a particular vision of
XIMPEL. The other explorations serve as puzzle pieces of programming and design explorations and
they serve as an inspiration for this implementation of XIMPEL React.

Addendum. While it is true that this is the final exploration, I am constantly think about XIMPEL.
If T find something interesting, then I decide to explore the topic in a shallow manner or in-depth.
Shallow explorations do not make this thesis, in-depth explorations do. Because of this, another
exploration has been made — exploration 7 (see appendix A). Requirements creep and project scope
expansion is something that has happened in this master project quite frequently. Unfortunately, due
to the project scope, this epxloration will only be promoted in addendums or very last minute edits
such as this one.

4.5.4 Future work

Since XIMPEL React is more web-based in terms of layout compared to XIMPEL JS, it would benefit
from having a different positional system. To this end, it may be an idea to implement CSS for XIMPEL
React. CSS already gets rendered through the browsers so the language does not need to be defined.
Fortunately, the architecture serendipitously allows for CSS already since every React component
renders at least a div with a distinguishable class. Adding XIMPEL author created identifiers or class
names as attributes via XML tags would be helpful. Another task that needs to be accomplished is
documenting per tag in XIMPEL which CSS elements are already used for the old positioning system.
By extension it needs to be written about how CSS differs because of this.

Other future development work would be to get feature parity with XIMPEL JS. Currently XIMPEL
React is clearly in a prototypical stage and, according to its own design goals, it is quite far with
regards to feature parity, but it is not there yet.

35

O

Exploration 4: creating the

necessary requirements to measure
the frustration of users in XIMPEL

At one point while I was playing with XIMPEL I noticed that I found it to be a shame that every
playthrough would be forgotten after it had ended. I wanted some form of memory. I wanted some
form of logging. I then realized that creating a logging framework and creating a theoretical framework
on how to measure frustration with it would be valuable for improving the user experience of XIMPEL.
So in this exploration I am finding out what kind of theoretical framework for frustration (and to a
lesser extent engagement) we should have and from that framework what the minimal requirements
are regarding data capture.

One reason I chose frustration as an important metric for user experience is because it seems that
the experience of frustration is still quite misunderstood in academia. Having written earlier about
frustration from a psycho-neurobiological perspective, I had the idea that I would be most productive
for the academic community if I would resume my work in this area of research. Another reason is:
this is my first attempt and experience at answering an artificial intelligence question while having a
background in it through other disciplines, which is exciting!

36

5. Exploration 4: creating the necessary requirements to measure the frustration of users in XIMPEL

Research Questions and Contribution

How could a semi-automatic system regarding a positive or negative user experience be im-
plemented? This question has proved to be too much to answer within one thesis that is
structured in an exploratory manner. The actual question that has been answered are: what
are the minimal requirements needed in order to implement such a system? The answer to that
is: capturing data and understanding how to classify frustration. This data capturing facility
for XIMPEL has been implemented. Ideas regarding how to classify frustration have been put
forward and they are backed by literature.

The answers to these specific questions for this exploration are contributions towards research
question 1 and 3. Research question 1 is: (1) how does XIMPEL need to be extended to con-
tribute to online education? Research question 3 is: (3) what areas of research could XIMPEL
benefit from, and how?

It contributes to research question 1 since frustration and engagement are important indicators
to keep progress of. Students seem to experience them quite a bit. Unsurprisingly, some
of the academic literature is precisely the intersection between programming education and
frustration. Having a core understanding whether frustration is useful or not useful, when such
a thing is the case, how to semi-automatically detect a useful frustration or a not so useful
frustration will help students following introductory programming courses.

It contributes to research question 3, because the two fields that are outside the area of hyper-
media are a blend of Artificial Intelligence and Psychology.

5.1 Justification for creating a logging framework

One justification is: to understand your users. Hugo Huurdeman shows this justification in work that
happened at more or less the same time [70]. In order to understand more about the user experience
(UX) that XIMPEL users go through I have created the beginning of a framework that logs data needed
for classifying frustration or engagement. Understanding whether a user is engaged or frustrated helps
to improve the UX for authors creating XIMPEL presentations. I chose for frustration and engagement
because it will give insight into whether a user wants to quit in the middle of a XIMPEL presentation
(frustration) or is driven to see all of it (engagement). Moreover, it begs the question: how does
one measure and classify frustration and engagement in hypermedia frameworks? For this question I
emphasize a focus on frustration, because quitting an application out of frustration is a more urgent
problem to solve than to keep users fully engaged. Another question that came up is: does frustration
always lead to quitting behavior? The answer to that is no. It does not always lead to quitting [89].
A follow-up question would then be: is it possible to differentiate between different frustrations? To
which I found a tentative slightly surprising answer.

Since hypermedia frameworks are interactive they have on some dimensions more in common with
digital games than with multimedia. A single video does not allow for much interactivity. However,
with XIMPEL it is possible to create a point and click adventure game. Therefore, I chose to review
the literature on engagement and frustration regarding digital games. A second motivation to do this
is because XIMPEL is an intentional intersection between hypermedia and gaming.

My approach for reviewing this literature is as follows: I draw from my own previous literature review,
written in 2015 about what frustration and engagement is and add to that review with new research
findings. I furthermore, review literature on how engagement but most notably frustration are mea-
sured and classified. The result of this literature review will influence my choice of measures that I
will include in creating a logging framework for XIMPEL. Furthermore, these measures will have a
focus on accessible non-customized hardware, which means conventional hardware available on most
laptops and tables. Another result is a literature review itself, which is guided for design and not for
comprehensive review but because of that an example of bridging literature to implementation.

37

5. Exploration 4: creating the necessary requirements to measure the frustration of users in XIMPEL

5.2 What is frustration

In gaming, to frustrate a player means to block their progress. Or as Gilleade and Dix state it, it
is: “that which arises when the progress a user is making towards achieving a given goal is impeded.”
[38] In general, players will feel frustrated when they realize that the blocking of their progress has
happened.

Despite that this definition has been made in a gaming context, it seems to be quite general. Studies
about completely different topics (e.g. human motivation) give very similar definitions, albeit im-
plicit. Take for example (emphasis by me): “Recently, it has further been recognized that beyond
measuring need satisfaction versus the lack thereof, needs can also be actively blocked or the growth
potential of individuals, the frustration of these needs would elicit defensiveness, ill-being, and even
psychopathology.” [13] Because of this generality, the definition of Gilleade and Dix will be used.

5.2.1 Some nuances regarding frustration

It matters to whom or what the frustration is attributed to. If the frustration is attributed to oneself
it will not cause quitting a game. If, however, it is attributed to the game itself (e.g. lag or too difficult
AT) or to another person (e.g. the co-player did not perform well in a task) then the player will quit.
This is indeed a quite subjective experience. More forgiving players might attribute the frustration
more to themselves than to their co-player, for example. In my literature review, I provided some
evidence for this claim but the strongest evidence for it has been found in a recent 2017 study about
near-misses in Candy Crush.

The near-miss is a form of frustration where attribution of a failure, which was almost a success, is
attributed to oneself. The canonical example of a near-miss is a slot machine that almost shows three
lucky number sevens, but the third seven goes a little bit too far and reaches over the line, leaving
itself at the right bottom corner of the slot machine (see figure F.7).

In the study, researchers found that the near-misses in Candy Crush increase the wanting to play
and frustration [57]. This is clear evidence for the idea that the attribution of frustration matters
since players believe they are able to achieve their goal. For XIMPEL authors, understanding this
distinction is important when their application resembles a game.

However, when the XIMPEL application resembles multimedia more in the sense of that it is a XIMPEL
application in which the user is passive, then the attribution of frustration is in almost all cases on
the XIMPEL application itself. When a user is passive, he or she cannot do much in the first place
and will therefore most likely place the blame on the application. That blame may be placed on
several factors such as: topic mismatch, badly designed applications, the XIMPEL control buttons, or
a terrible quality of experience (when watching YouTube videos or other networked media types).
XIMPEL authors need to consider to what extent they deem frustration and the willingness to quit
important. In some contexts, frustration matters less. For example, when students are made to watch
any presentation during their student lifetime at university, frustration will only lead to disengagement
but not to quitting. One might think that this is just as bad, but one study shows this is not always
the case.

Computer scientists at the University of Saskatchewa in Canada created a game to create interpersonal
trust in which they showcase: a literature review on what interpersonal trust is, a literature review on
how it is developed in real-life and via digital games and an experiment if their game fosters trust. The
interesting result is that their game was found to be frustrating. They remark: “Our game was strongly
affected by networking issues, which made the game more frustrating and difficult than we expected.
... participants in the game condition scored low on competence and high on tension. Comments from
the debrief as well as the recordings of the game session confirm that many participants experienced a
frustrating, ‘buggy’ game, rather than the playful experience we intended.” [25] They also state that
this situation caused the game to become an out-group and the players to become an in-group, which

38

5. Exploration 4: creating the necessary requirements to measure the frustration of users in XIMPEL

fosters trust!. A game does not have to be fun to reach its designed goal [25]. It could even be very
frustrating, it could even be a negative experience.

5.3 Capturing data for analyzing frustration

Since XIMPEL is a framework with the browser in mind, I have assumed that most users only have
access to standardized hardware. This is because at this moment XIMPEL is used by students at the
Vrije Universiteit Amsterdam and by organizations who use it in giant tablet installations. Because of
time-constraints I used measures that I could only find on my MacBook Pro (2015), since that is the
hardware available to me.

This constraint takes precedence over evaluating academic literature. No organization has given me
the tools to do something else and I do not have the funds available to buy specialized hardware.
However, some of the reviewed literature (see the next section) does use specialized hardware. Despite
this mismatch, these articles provided inspiration nonetheless on the nature of frustration, measuring
it or classifying it.

5.3.1 Frustration measures: clicks, mouse speed, user XIMPEL subject
history and facial expressions

XIMPEL users tap or click on overlays, which means that taps (not available on my MacBook Pro) or
mouse clicks need to be measures. Furthermore, measuring mouse moves at the exact moment when
they are made allows for the inference of acceleration or deceleration of the mouse and some estimated
average speed in general. Since XIMPEL developers also know on which x and y coordinates their
overlays are, they can also analyze through the mouse position if the user is standing on an overlay or
media item.

Finally, measuring the starting time and which subjects the users are in at any moment allows for
the construction of a path where users have been and for how long. This used to be in the old
XIMPEL framework (written in ActionScript) but has not yet been implemented when it was ported
to JavaScript.

Measuring: mouse clicks (x, y and time), mouse moves (x, y and time), starting time of playback
per subject (in milliseconds) and the subject ID forms the basis of measuring frustration. It is quite
unfortunate that these measures are relatively indirect. Frustration is a feeling first and foremost and
gets expressed through the user in a variety of ways.

The need to obtain more direct data was there since these measures are perhaps too indirect to be
useful for classifying frustration. Maybe it would be possible to capture frustration through the use
of a web cam. While it is not as standardized (or unobtrusive) it may help greatly in the situations
in which it can be used. So I decided to make that an optional measure. Sending web cam data
directly is a lot of data to store. Therefore, I decided to classify facial expressions directly through the
CLMtrackr JavaScript library. It detects: joy, anger, surprise and sadness. It has to be noted that
this is a trade-off to make. Does a data capturing server store video streams or does it store classified
data? The disadvantage of the former is that there is a lot of data to store, the disadvantage of the
latter is that the data contains less information since there is a lot more one can do with pure video
data than classified facial expressions. How this classification works is explained later in the chapter.
The use of CLMtrackr and classifying emotions related to frustration have two reasons. (1) Detecting
facial expressions in the browser in general is difficult, so it is better to work with libraries already in
place for this. As of writing, this is the only library I came across. And (2) in the reviewed literature
on facial expressions (see section 5.4.2.3), there is a strong argument to be made to not measure the

T will skim over the fact that they implied on some level that a game is a person (an out-group in this case). Media
like games, are social things that we project human values on. Unfortunately, I know too little to academically defend
this position and will defer to my media studies and other social science colleagues. These types of things should be
discussed more often in computer science literature in order to have stronger assumptions and assertions.

39

5. Exploration 4: creating the necessary requirements to measure the frustration of users in XIMPEL

facial expression of frustration. With that said, the detection of anger may be useful since frustration
and anger are very related through the frustration-aggression hypothesis [89]. Sadness may be useful
as well since it can be caused by a hopeless variant of frustration [55].

5.3.2 Software architecture and implementation for capturing data

All the mouse click, mouse moves, starting time, subject ID and classified facial expressions are sent
to a NodeJS server. That server created a session ID to the client beforehand (including the date and
the time) and stores everything in a postgres database. The data stored can later be retrieved for
classification. The reason for not doing it on the fly is because it is computationally expensive and
perhaps even wasteful. The detection of frustration is only relevant when developers want to improve
the UX of XIMPEL. NodeJS with Express has been used because developing with an unopinionated
microframework allows for the quick creation of routes that stores data in a database. The data can
be queried from the database using any kind of program.

Independent parallel work has been done in similar fashion by the programmers of the University of
Oslo who develop XIMPEL applications specifically for tablets. Instead of using NodeJS and Express,
Python was used in combination with Flask, which leads to a more or less similar communication
pattern between XIMPEL and the server-side data capture application [43].

5.4 Classifying the measures as frustration

Now that we have a way of measuring raw data for frustration, the next question is: how to determine
when a user is frustrated with this data? The approach for this is to first look at previous research
and then conceptualize a possible classification method.

I do need to note that I did not implement a classification algorithm. It is outside of the scope of this
project to implement it. However, conceptualizing a first iteration of such an algorithm or algorithm
design approach leaves opportunity for further realization in future work.

5.4.1 Related Literature

Depping, Mandryk, Johanson, Bowey and Thomson used four inputs (galvanic skin response,
heart rate and EMG frowning and EMG smiling) in order to calculate arousal and valence values. A
certain combination of arousal and valence (which is a range from displeasure to pleasure) would yield
a particular emotional state: boredom, challenge, excitement, frustration, and fun. Each input is a
time series that would be used to create a time series for arousal and valence, called AV-space (figure
1, 3, 14 and 15 in their paper [59] are helpful visual aids for this explanation).

For example, increasing galvanic skin response would be mapped to increasing arousal. Low or high
galvanic skin response would be modulated with heart rate data, where a low heart rate would result
with a lower arousal level than high heart rate data. EMG Smiling would mean that valence levels
increased and EMG frowning would mean that valence decreased. They had other rules which have
been written in more detail in [59].

Then, they created a mapping from AV-space to emotions. In particular, frustration needs to have a
high arousal (e.g. high galvanic skin response and high heart rate) and low to medium valence (i.e.
displeasure, e.g. frowning on the EMG). They discuss all their emotional states in their paper [60]
and go into more detail in another paper [59]. Through a user study they found that their predicted
model of frustration did not coincide with self-reported frustration. This was not the case with for the
emotions fun and excitement [60].

Researchers in Cyprus and Portugal created a new mouse called CogniMouse [78] for older
computer users. With this mouse they hoped to measure frustration since some older computer users
have some difficulties using computers at work. While I am not developing my own computer mouse,
it is interesting to see which extra measures the research team was trying to get. The sensors in the

40

5. Exploration 4: creating the necessary requirements to measure the frustration of users in XIMPEL

mouse are a: “galvanic skin response sensor, temperature sensor, inertial measurement unit (IMU),
grip/pressure sensor, and heart rate sensor.” [78] They used a classification algorithm that employs
“Bayesian-based formalism inspired on conditional probability distributions.” [78] This means that
they used a formula that constantly calculated a probability to what extent the user was frustrated.
They used: grip force, acceleration vector and click stream frequency as inputs. The formula itself is:

P(Frus) x P(Grip|Frus) x P(Acc|Frus) x P(Click|Frus)
P(Grip) x P(Acc) x P(Click)

P(Frus|Grip, Acc, Click) =

(78]

The formula clearly shows the Bayesian nature of the classifier. They have a planned user study and
present a use case scenario of a middle aged woman who would experience issues using a new computer
system. The CogniMouse noticed her frustration and helped her by presenting a graphical help wizard.
In their future work they will add more ways to track the user, such as an eye tracker.

In the study of [58] an annotator annotated the signs of frustration from web cam recordings,
where students in those recordings made use of web based programming tutoring meant for a Java
programming course for beginners within University of Singapore. Students mouse clicks, keystrokes
and actions were written into log files. This was compared to the annotations on a time scale. After
this comparison, relevant extracted metrics were: “the mean and median key latencies, number of
keys, wait time (duration longer than 1 second with no key inputs), back space and delete key latency
and frequencies and the frequencies of mouse clicks. The interaction features include the number of
compilations, number of errors encountered, number of exercises completed and the duration of time
spent working on the exercises.” [58]

The extracted features were aggregated into a sliding window with sizes of 30, 60, 90, 120, 150 and
180 seconds; where windows would overlap each other for one-third of whatever window size was
determined. Frustration would be observed per sliding window. If the frustration occurred in the
overlapping sliding window part, then both sliding windows were annotated as a frustrating event.
Changing the window width from 30 seconds to a 180 seconds — and everything in between — would
have consequences for the detection of frustration. If someone gets frustrated within every 3 minutes,
then a window size at the highest width would always be marked as frustrating, this would not be the
case for lower window width sizes. The problem with lower window width sizes is that there might be
insufficient data to determine anything at all.

To classify frustration within these sliding windows they trained a Bayesian network and compared
it to a naive Bayes model. The performance of the Bayesian network compared to the naive Bayes
model was a significant improvement. The performance improvements were 32.79% (under the curve,
the authors did not define what this means), 32.73% (accuracy, “the number of correctly identified
instances divided by the total number of instances” [58]) and 2.53% (sensitivity which “measures the
true positive rate or the proportion of positives that are correctly identified as such while specificity
measures the proportion of negatives that are correctly identified as such” [58]).

Instead of classifying frustration, one could also classify something else such as stress. Rodrigues,
Gongalves, Carneiro, Novais and Fdez-Riverola did this [83] in a study for which they created a
stress detection tool in for the e-learning platform Moodle. They created a system called the Dynamic
Student Assessment Module (DSAM) which has all kinds of components for detecting the mood of
a student. The DSAM does this in two ways: by asking students through a questionnaire and by
looking at their behavior. They looked at their behavior through “facial analysis, mouse analysis,
keyboard analysis, and log analysis (through Moodle logs).” [83] The features they analyze are: “the
number of mouse clicks per minute, the average duration of mouse clicks (from the button-down to the
button-up event), the maximum, minimum and average mouse speeds, the keystroke rate (strokes per
second), the average duration of a keystroke (from the key-down to the key-up event) and performance
measurements.” [83] They asked 10 students to do two similar programming tasks. In one programming
task they were stressed through the use of a time limit and being told that this assignment was very
important for their future (academic) career. They found that the following JavaScript events were
fired a lot more when students were stressed: key down, key up, mouse down, mouse up, mouse wheel

41

5. Exploration 4: creating the necessary requirements to measure the frustration of users in XIMPEL

and mouse movement. In some cases it was 5 times as high, in other cases about 1.5 times as high.
From these differences they claim they can detect stress.

5.4.2 Proposed approach for classifying frustration in XIMPEL

In the related work section a lot of input sources have been described (too many to list). Classification
techniques were: rule-based, Bayesian and comparing it to a control group. Furthermore, [60] wrote
about another author using Markov chains. It seems to be the case that any probabilistic classifica-
tion technique can be tried. Other than probabilistic classification techniques, rule-based techniques
sometimes seem to work — comparing results to a control group is a specific example of a rule-based
technique.
In XIMPEL we measure: mouse clicks, mouse moves, a historical trail (with time) of which subjects a
user goes to and facial expressions. Since a hypermedia-like application could be different than a game
or a generic application due to watching video, some measurements will not always be the same. For
example, someone could get frustrated at miss-clicking on an overlay, finally the user will click on the
overlay. Compared to a non-frustrated user, the frustrated user will likely have more clicks. But if a
user is frustrated because a certain video is boring and he or she cannot go to the next subject, the
frustration may only show via their facial expression and not through their use of how they use the
computer mouse.
Since it seems more important to give insight to XIMPEL authors when a user is possibly frustrated,
I put more emphasis on detecting all true positives. In order to detect all true positives, one must be
willing to accept that there will be possible false positives. In order to get all true positives one must
minimize false negative occurrences of frustration and thus be forced to have more false positives. At
the same time, looking into a particular possible frustrating episode must be worthwhile so having
a signal to noise ratio of 10 to 1 might be a bit much since it might take 2 to 5 minutes to check
a possible occurrence of frustration (e.g. checking the data for a particular person for a possible
frustrating occurrence). A signal to noise ratio of 1 to 3 would be much more acceptable. For example,
if the signal to noise ratio is 1 to 3, then it would take 20 minutes at worst to look at instances of
possible frustration.
So the requirements for our classifier are:
o A signal to noise ratio of 1 to 3 or lower. A signal is a frustrating event, noise is the complement
of it.
o If the first requirement has no surpassed threshold (i.e. a ratio lower than 1 to 3), then get more,
or even all, occurrences of frustration.
e Be able to pickup on frustration when the user is not using computer peripherals (e.g. listening
to audio or watching a video).
¢ Be able to pickup on frustration when the user is using computer peripherals.
Time constraints prevent me to create such a classifier. Nevertheless, I will write my ideas down for
future work related purposes. Since interactive video, hypermedia and XIMPEL applications are a
bit different than other applications, an observation study should be done as to what makes users
frustrated. From such an observation study it should be possible to see what frustrated behaviors
users have and how this could be possibly measured. The measures that I programmed for are a mix
of a best guess inspired by literature and hardware constraints.
Classification should depend on the requirements for detecting frustration within XIMPEL. These
requirements are listed above and were made with the rationale of why we should detect user frustration
within XIMPEL applications in the first place which is to improve UX. The requirements are fairly
broad, which means that a potential solution does not have to be perfect. It is likely that multiple
solutions are possible.
My approach to classifying frustration would be to create a simple classifier per input type. So there is
a mouse movement frustration classifier, for example, and also a facial expression frustration classifier.
If one of these classifiers gives an alert, then frustration is possibly detected. This is possibly too
straightforward, but it allows to get more experience as to which input types explain frustration

42

5. Exploration 4: creating the necessary requirements to measure the frustration of users in XIMPEL

independently from the other input types. Testing which classifiers give too many false positives is
future work. The question that I will attempt to answer now is how does each classifier work?

While this is one question and directly applies to mouse clicks, mouse moves, user trials and time
between subjects; it applies differently to detecting frustration in facial expressions. CLMtrackr already
classifies facial expressions. So the question regarding facial expressions goes much deeper and this
depth is written down. Then, I realized that in my first literature search on detecting frustration in
users I did not find anything about how to detect frustration in facial expressions, so I did a separate
literature search for that specific question. So the specific questions regarding frustration in facial
expressions are: (1) how does the current classification algorithm work regarding basic emotions? (2)
do classified basic emotions help classify frustration, if so, how? And (3) why not detect frustration as
a facial expression directly? Perhaps noticeable, questions 2 and 3 are related to how does the facial
expression classifier work?

5.4.2.1 Facial expressions

The JavaScript library CLMtrackr classifies anger, sadness, happiness and surprise and gives all four
a value between 0 and 1. CLMtrackr does this through constrained local models (CLM) among
other things. It technically also classifies contempt and fear but not good enough according to a
quick discussion with the CLMtrackr author on the Github Issues page [75], which is why these facial
expressions are not classified. CLMtrackr trained its facial recognition abilities through the MUCT
Landmarked Face Database (MUCT: Millborrow — the author — University of Cape Town) [63]. This
database has 76 points (called landmarks) annotated on 3755 faces. It is possible to see an example
image of such an annotated face on their homepage [63].

What follows now is a high level explanation of how this works. However, the mathematics will not
really be explained since they have been explained quite well in the online resource of [72], which I
recommend to anyone interested in the technical details of facial detection. That article also points to
amazing resources on CLM itself. One does need to read the article critically since I captured it on a
subtle error (which has been resolved since) [90].

The algorithm that Clmtracker uses is called subspace constrained mean-shifts, which is a form of a
CLM and is authored by [91]. CLM algorithms in general have two strategies that happen iteratively
until some optimum has been found as explained in [91].

e 1. Exhaustive local search: perform a local search for each landmark in the model around their
current point estimate. Use a classifier that will generate a probability map and associate the
landmark to the highest probability pixel (or collection of pixels) on the map.

e 2. Optimization: it could be that some landmark to pixel associations are a bad fit because
there were no high probability pixels on the map. Shift their point estimate to somewhere else
by calculating where there are likely higher probabilities.

The mathematical techniques that make this possible are explained below. I do have to caution
the reader that I intuitively understand what is happening, but I do not understand the mean-shift
algorithm and associated algorithms well enough to explain its details. Such details can be read in
[91]. Furthermore, data cleaning techniques that are used are not presented at all in this thesis (see
91]).

The author of CLMtrackr built a model through the use of Principal Component Analysis (PCA),
which informally speaking is a method by summarizing as much variance into a component. This is
done by first calculating the mean points of all the landmarks of all the annotated faces, then PCA is
used to extract the variations as components (they can also be seen as linear combinations of vectors).
PCA has the property that the first component accounts for the most variance, the second component
for the second most variance and so on. This means that with a few components most variance has been
accounted for. PCA is therefore really useful as a data summarization technique. The components

43

5. Exploration 4: creating the necessary requirements to measure the frustration of users in XIMPEL

themselves are uncorrelated to each other?. The PCA model of a generalized face can be viewed at
[73]. Playing with it gives a better intuitive understanding of what PCA does regarding finding the
average model of a face and the variations of that on a per component basis.

The model has 70 points. Each point in the model has been associated to one classifier during training,
meaning there are 70 classifiers for the model in total. Each classifier has been trained by cropping a
small patch of its associated annotated point per facial image (3755 facial patches per annotated point
in total). The classifier for such a patch is a logistic regression classifier with a support vector machine
linear kernel (and a MOSSE filter which is of less importance). The reason it is a logistic classifier
with a linear kernel® is because it “is what the original paper suggests.” [72]

Exhaustive local search. When the classifiers are used it crops a local (i.e. small) search rectangle
around its initial position and calculates a probability map of pixels which are aligned with the land-
mark. When this works, such a map has a few high probabilities lying around in the center, of which
one of them is the highest and that pixel value (or grid of pixels) will be associated to the landmark.
This is done for all 70 landmarks in the model.

Optimization. However, doing this there is one problem. Since the local rectangle might be too local.
The problem with this is that some classifiers cast their local rectangle in a different area compared
to where the actual facial feature is (e.g. an eye). In order to counter this, a second step is being done
that is akin to gradient descent. This is done by shifting the point of a landmark, which means when
it will cast a new rectangle to search for the highest probability it will find new values. The method
is called a mean-shift. This mean-shift is determined by using expectation-maximization.

By doing all of this we have found faces. What we have not found are facial expressions. These
are classified using logistic regression. The parameters of the facial model are used as features. To
get training data for the regression, images of people expressing emotions have been annotated and
projected on the PCA decomposition. By doing this, the closest parametrization is achieved. What
is not done but could be done for future work is to first determine a neutral baseline, since it is not
clear how expressive emotional faces are beforehand. The emotion classifier can also be viewed since
the regression coefficients can be used as parameters for the facial model. You can view it at [74].

5.4.2.2 Detecting frustration through CLMtrackr

The facial expression of anger is interpreted as frustration. The facial expressions of happiness and sur-
prise is interpreted as its opposite: engagement. Sadness might be a meaningful measure of frustration
as well since it has shown to correlate as much to frustration as anger [55].

It is important to keep the classification of engagement since it may give extra data if another classifier
does classify that the user is frustrated. In most cases facial expressions should take precedence over
mouse clicks, mouse moves and history graphs because a facial expression conveys how a user feels,
much more so than the other measurements. The reason for that is that facial expressions are much
more connected to emotions than the other units of measurements since facial expressions are a display
of emotions.

It may seem a bit of a cop out to use anger and sadness as a proxy of frustration. However, perhaps
it is not. Anger is the result of a particular frustration. When a user is frustrated at anything other
than him or herself, he or she will become angry [89]. Therefore, the detection of anger is a possible
detection of frustration. Other research (not included in the literature review) that point to this
direction is research about consumer anger [36]. The authors do not explicitly write about frustration,
but in this study all the sub-categories of anger are related to frustration in the conceptual sense,

2An in-depth mathematical student explanation on can be found on http://www.cs.otago.ac.nz/cosc453/student _
tutorials/principal_components.pdf. The best visual explanation about PCA is to be found here: http://setosa.
io/ev/principal-component-analysis/. The best visual explanation for eigenvectors is here: http://setosa.io/ev/
eigenvectors-and-eigenvalues/.

3The author Audun Mathias @ygard calls it an SVM kernel. However, digging into the source code it seems that the
so-called SVM kernel is a linear kernel. T had to dig deeper since there is no such thing as an SVM kernel. The kernel
can be seen here with a search query in the Github repository: https://github.com/auduno/clmtools/search?utf8=
%E2%9C%93&q=kernel This has been resolved during a brief discussion with him on Github Issues [90].

44

http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf
http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf
http://setosa.io/ev/principal-component-analysis/
http://setosa.io/ev/principal-component-analysis/
http://setosa.io/ev/eigenvectors-and-eigenvalues/
http://setosa.io/ev/eigenvectors-and-eigenvalues/
https://github.com/auduno/clmtools/search?utf8=%E2%9C%93&q=kernel
https://github.com/auduno/clmtools/search?utf8=%E2%9C%93&q=kernel

5. Exploration 4: creating the necessary requirements to measure the frustration of users in XIMPEL

they are: broken promises, unfairness and expressed hostility (by service employees to customers).
Neuroscientific research shows that “poorly controlled frustration, manifested as exaggerated anger.”
[102] Research on emotion regulation implies the same, in one paper it is stated that “a low frustration
tolerance is related to trait anger and a higher level of frustration tolerance is related to lower levels
of anger and longer persistence on difficult tasks.” [94]

Kuppens, van Mechelen, Smits and de Boeck gave strong nuances to this view. In their article the
appraisal basis of anger was evaluated to which components were necessary and sufficient. The re-
searchers conducted two studies and they found that “other accountability and arrogant entitlement,
as instance of unfairness, are specific appraisals for anger.” [55] They suggest that frustration and
having an antagonistic action tendency co-occurs. This is easier to believe for having an antagonistic
action tendency, since only one study found an association with anger. However, the reason they state
for the feeling frustration leaves much to be desired. They studied the feeling of frustration in their
first study and goal blocking in their second study. They found that goal blocking is not associated
with anger but feeling frustrated is. They also found that feeling frustrated is associated with sadness
[55].

Putting anger and sadness side by side from their first study, it is observed that sadness has frustration
as an appraisal-action tendency component and did not have any significant correlation with the other
appraisal-action tendencies. Interpreting these results it could mean that sadness occurs when one
feels hopeless because of frustration. Whereas if one feels angry because of frustration it is because of
someone (or perhaps something) else.

The result of Peter Kuppens et al. give an indication that indicators on sadness may be important as
well. Therefore, the final conclusion of detecting frustration in facial expressions is that sadness and
anger combined are an interesting proxy for frustration and joy and hope for engagement.

5.4.2.3 Detecting the facial expression of frustration

The complexity of writing a thesis while programming is that a program can become obsolete when
new literature is found. It is quite possible for a researcher to believe they are up to date for a certain
topic, only to discover there was extra information out there available by a slight alteration of their
search queries which they had not considered. This arguably happened for this project. Indeed, an
exploratory thesis such as this one is quite prone to requirements creep. Additional found literature
seemed to answer one particular question: how does one detect the facial expression of frustration
directly?

The following articles have not been found initially, because the importance of detecting facial expres-
sions at all — on a practical level — had more importance. Both studies used the Facial Action Coding
System (FACS) which divides the face up in certain sections. These sections are called action units.
Humans code these action units on a 1 to 5 point scale in terms intensity. These 5 points are labeled
as: (1) trace, (2) slight, (3) marked or pronounced, (4) severe, (5) maximum. Other modifiers are R
and L which convey information that assymetrical movements happen on the right or left side of the
face.

In one article action units (AUs): 1, 2 and 14 (14 is of secondary importance) were associated with
frustration. AUs are respectively named after their movements. For example, AU 1 is called the inner
brow raiser, AU 2 is called the outer brow raiser and AU 14 is called the dimpler. Moreover, action
unit 1 and 2 often occured together and “triggered each other” [18] which means that “a raised inner
brow tends to trigger a raised outer brow, and vice versa.” [18]

An article written five years later (in 2013) compared the results of the authors of [18], though not
specifically from the paper that is outlined in the previous paragraph but a paper written by the
same authors a year later [21], which describes two studies one of them being the study of [18]. They
found completely different results since they noted that frustration has a strong association with AU
4. They note that AU 1 was associated with whether a student self-reported their tutoring session
(with JavaTutor) to be worthwhile. AU 2 was associated with whether a student self-reported the
feeling of being rushed during a tutoring session. AU 14 was associated with whether a student self-

45

5. Exploration 4: creating the necessary requirements to measure the frustration of users in XIMPEL

reported with whether how successful he or she felt in the accomplishment of a task. All the AUs
they found for their dependent variables were: AU 1, AU 2, AU 4, AU 7 and AU 14. They measured
self-reported frustration as: “How insecure, discouraged, irritated, stressed and annoyed were you?”
[40] It could be the case that they measured something different than frustration since: “discouraged,
irritated, stressed and annoyed” is not particular to only frustration, whereas the other questions in
their post-session survey seem to be related to frustration. The authors note a similarity with how
they detected AU: 1, 2 and 14; with its relationship to frustration in previous research as well. They
seem to suggest that these action units are related to frustration. Finally, their research shows how
difficult it is to replicate previous research in this area.

This difficulty is also seen in the final article found for this section, which has been peer-reviewed but
will be published later in 2018. The topic of research was detecting frustration in frustrated drivers.
In this study the authors found that they were mostly in line with the action units that also have
been found by Ekman, which are AU: 4, 14, 23 and 24 [47]. These action units are only partially in
line with research from the previous paragraphs written. The authors from the previous paragraphs
found evidence for AU: 1, 2 and 14 [18, 40]. The authors of [47] note that these action units have been
linked to other emotions such as surprise (AU 1 and AU 2) [47]. In their final results they found no
significant result for AU 4 and AU 14. They did find a significant result for the association of AU 23 and
frustration. They also did find a significant result for the association of AU 24 and frustration. They
furthermore did an exploratory analysis, meaning they also looked between a difference of their control
condition and experimental condition while considering all the other action units. In this analysis they
found that AU: 10, 12, 17 and 20 also had significant differences between the experimental and control
condition.

It could be that frustrated driving does not capture the same type of frustration as a facial expression
compared to computer-mediated learning — which the other two studies in this section were about. It
could be that there are issues with the methodology. What it at the very least shows is that finding
the facial expression of frustration directly might be possible for specific domains, such as computer-
mediated learning or frustrated driving, but it proves to be much more difficult for detecting frustration
as a facial expression in general.

Since it may or may not be possible to directly detect frustration it may seem to be a better idea to
stay with the idea of having proxies for frustration such as anger and sadness. Anger and sadness as
facial expressions have been studied more in-depth compared to frustration. While it will increase the
signal to noise ratio, it is better to have a signal at all since research on finding frustration directly
argue on what the signal is. User studies would need to be done to show if this approach has any
merit.

5.4.2.4 Mouse clicks and mouse moves

In XIMPEL a user navigates with the mouse either to interact with the XIMPEL presentation (through
overlays, form input or multiple choice questions), to use the XIMPEL controls (stop, pause and play)
or to use a feature of the browser they are using. By being aware of this, it is obvious that a classifier
for mouse clicks and mouse moves is only able to detect frustration when the user interacts with the
video. This frustration is hypothesized to occur in two ways.

The first one is that for some reason an interactive feature of XIMPEL does not fully work. For
example, a user types out their nickname in the XIMPEL application and when the user clicks on
submit nothing happens. Sometimes this can happen in any application and most users would click
again. Yet, if nothing happens, the chance of frustration is really high since the user is not successful
in reaching his or her goal. In the data one would see a lot of mouse clicks and little mouse moves
at the same location. This form of frustration is obviously Ul-frustration and is possibly as easy to
classify by filtering the data for a lot of mouse clicks on the same place. If a lot of users have issues at
the same location, then it is abundantly clear that the UX need to be improved.

The research of [83] showed that there was more mouse movement, mouse down and mouse up events
when programming students were stressed. Programming is a more interactive experience than a

46

5. Exploration 4: creating the necessary requirements to measure the frustration of users in XIMPEL

hypermedia presentation so not all metrics may show up in the same way when it comes to hypermedia
presentations. However, having experienced hypermedia presentations myself, one hypothesis is that
it could be the case that mouse movement is more rapid in a frustrating experience compared to a
non-frustrating experience. In these cases a user feels he or she is waiting too long for going to the
next subject. This is a form of content-frustration — arguably also Ul-frustration, since there is no
time-scrubbing.

5.4.2.5 User trails and time between subjects

When it comes to analyzing the history graphs, the most important questions to ask are: (1) did the
user spend the amount of intended time for each XIMPEL subject? And (2) if the user did not, then
did the user follow an acceptable trial within that graph? It could be presumed that users feel relatively
engaged when they follow a XIMPEL presentation as intended as opposed to when they do not. For
example, some XIMPEL presentations present overlays within any subject for the reason that a user
can always opt to go to the next subject. This is to alleviate frustration, but in some presentations
this is also a problem, depending on the intent and structure of the presentation. Some XIMPEL
presentations intend that every piece of content is read and seen and some XIMPEL presentations do
not. For those that do, the second question seems more relevant.

An example of this is the Zaanse Schans (a place in The Netherlands) example on the ximpel.net, where
it is possible to do quizzes for every informative video shown, but users are also able to skip them.
The intended message would be a bit lost if users did not take the quiz since that helps for memory
retention. However, it could be argued that it is acceptable that all quizzes were not experienced
by users as long as they view al the video content. If users do not view all video content and quit
prematurely, then that may be seen as a sign of frustration.

User trails and time between subjects have two questions that seem quite XIMPEL presentation
independent. This is another reason why frustration classification has to be done after the fact since
acceptable paths and acceptable times can only be determined after a story graph and design of a
XIMPEL presentation is finished. Moreover, the idea of what is an acceptable history trail and time
between subjects may change in the mind of the XIMPEL author. This could be even years later. For
example, a new improvement for the XIMPEL presentation may be added and it changes the idea of
what is an acceptable history graph.

5.4.2.6 Conclusion

The philosophy of XIMPEL is being pragmatic. In this case the pragmatic approach is to classify
certain features that I am able to do and for other features I offer my best approximations of it. It
would be best if frustration could be automated, but in detecting frustration for XIMPEL it would be
as interesting to be able to filter data instead of full classification. This approach that you do not let
the computer do all the work is an approach in Al-based game-design as well (e.g. see [51]).

The approach that I outlined is to create a simple classifier per input type. Having multiple classifiers
being good at one type of classification is not uncommon since that is also part of the algorithm
regarding how facial expressions are classified [72]. The input types are: facial expressions, mouse
clicks, mouse moves and user trails per subject (how long have they been at each subject in a XIMPEL
presentation?), also called a history graph. My approach for facial expressions is to detect anger and
sadness as a proxy for frustration and joy and surprise as a proxy for engagement. A baseline needs to
be determined, since it could be the case that the classification of certain facial expressions could have
high values already at baseline (e.g. 0.8). The suggestion for mouse clicks for detecting frustration
is (1) local and frequent clicks; (2) faster mouse moves. For mouse clicks, a baseline needs to be
determined beforehand to see the normal frequency of clicks and speed of mouse moves. Detecting
frustration in user trials seems not possible but dissatisfaction may be. The outlined approach is to
see if the user (1) spends the intended amount of time per subject and (2) follows a trial deemed
acceptable by the author. If this is not the case, then the user might be dissatisfied, especially if other

47

5. Exploration 4: creating the necessary requirements to measure the frustration of users in XIMPEL

classifiers point towards frustration. It most likely is a thesis in itself to implement this fully and do
a user study on it.

5.5 Future work

Future work could be done in various areas. There are a couple of areas of improvement. These
are (1) detecting frustration and engagement directly, (2) researching the associations between mouse
moves and mouse clicks with facial expressions, (3) improving the classification abilities of the current
approach (e.g. better facial expressions detection), (4) implementing the current approach in code and
(5) rewrite the unique parts of the NodeJS server-side application to Python with Flask and merge it
with the Microtiks server made by Hugo Huurdeman and Dan Michael O. Heggg (the data capturing
server made for XIMPEL in Norway). Some of these opportunities will be outlined more in-depth.

5.5.1 Detecting frustration directly

Research on detecting frustration directly is tough. There are different experimental outcomes with
detecting frustration through facial expressions [18, 40, 47]. One outstanding question that generates
more questions than answers is: to what extent is frustration a universal emotion or facial expression?
Many emotion researchers claim it is not a basic emotion [69]. Is it then universal in western or eastern
cultures? Or are there even too many differences per country? Or is it even the case that frustration, as
a facial expression, is only measurable per topic? Maybe frustrated drivers look differently compared
to frustrated programmers.

If the extent of the universality or lack of it is unknown regarding frustration, then research on detecting
it will be more difficult to compare. Assume that it is true that the facial expression of frustration is
different per topic but researchers do not know this. Then, it could be the case that researchers on
frustration simply think that other frustration researchers that study frustration through another topic
are simply wrong. Just assuming that frustration has some form of universality is assuming something
very fundamental. If that fundament turns out to be false, then we are not standing on the shoulders
of giants but on towers of air castles.

So future work regarding detecting frustration directly is possible, but from a scientific standpoint
also a big risk, because the aforementioned assumption can cause a lot of confusion. Therefore, more
fundamental research is needed.

5.5.2 Researching the associations between mouse moves, mouse clicks and
facial expressions

Another line of future research is researching the system that already has been conceptualized. Looking
for associations between mouse moves, mouse clicks, joy, anger, sadness and surprise is a way to do
this. How to best go about this research is a tougher question. The main vague answer is to train
some model (“some” being the vaguest part).

For example, users could interact with a XIMPEL presentation online. Everything would need to be
recorded, which the current system is capable of doing. Then, we could use any machine learning
algorithm to see if it is able to predict one of the four facial expressions given mouse clicks and mouse
moves. The danger of this approach is that spurious associations probably exist. Therefore, this
approach may only benefit the predictability for detecting one of the four facial expressions, regarding
mouse clicks and mouse moves. If we are not able to directly detect when a user is frustrated, then
detecting sadness or anger seems like a good way to move forward.

One issue with this approach is that it assumes correct classification of: joy, anger, sadness and surprise.
The current method does not always do this. So there needs to be a self-report check from the user
to see if they think the classifier correctly classifies, as the current classifier does so better on some
humans than others.

48

5. Exploration 4: creating the necessary requirements to measure the frustration of users in XIMPEL

5.5.3 Improving facial expression classification

Current issues regarding facial expression classification is that it uses straightforward logistic regression
as a classifier. This can be improved by looking into different classification algorithms. Note, this has
nothing to do with face detection, which uses constrained local models combined with a mean shift?,
but with the classification of joy, sadness, anger and surprise. Secondly, no baseline is made. For
example, when T look in the web cam, the reading always is that I look very angry or sad (0.8). Two
things are possible here: (1) I am angry and I do not know it, or (2) my eyebrows frown down because
those are the type of eyebrows I have which are immediately classified as angry. This issue has also
been stated in the final paragraph of section 5.5.2. If a baseline check would be made, then the 0.8
angry value would be the new neutral.

40f which logistic regression with a linear kernel plays a part, but that in itself is not straightforward logistic regression.

49

Exploration 5: exploring what time
scrubbing mechanisms XIMPEL
needs

During my talks with Hugo Huurdeman we both came independently to the conclusion that XIMPEL
should have a time scrubbing feature that is related to all media types, especially for video. I talked
about how to possibly implement this. Then, as I went on to implement it, I gradually realized that
a time scrubbing feature for multiple parallel playing media is not straightforward at all. For this
reason, I staved off development and thought about the different possible conceptual implementations
of this. Time scrubbing in multiple parallel playing media is not the same compared to time scrubbing
for one video. Different conceptual implementations will lead to very different behavioral outcomes
when a user starts to use the time scrubbing feature. Since few people seem to have thought about this
before, I will attempt to outline different time scrubbing scenarios. Unfortunately, no time scrubbing
mechanism is implemented since there are too many design questions. The presentation and illustration
of these questions is the result of this exploration.

6.1 Time scrubbing with videos

In normal videos time scrubbing is straightforward. There is a slider. With this slider the user is able
to control at what time playback starts or skips to (see figure F.8). From a user experience standpoint
the benefits are: being able to skim videos by time scrubbing through it, skipping unnecessary parts
by showing small relevant segments and replaying a small segment after having not fully seen it due
to (for example) a lack of focus.

The straightforwardness comes from the fact that videos are linear media. Time scrubbing allows for
random access of linear media. Furthermore, videos are only one instantiation of media. Multiple
videos playing at the same time would be multiple instantiations of media. Contrast that with media
played in XIMPEL which could be: non-linear and have multiple instantiations of different forms of
media such as one text block, two images, three audio tracks, four videos and five custom defined
animations.

50

6. Exploration 5: exploring what time scrubbing mechanisms XIMPEL needs

Research Questions and Contribution

What time scrubbing mechanisms are possible? The design questions that need to be asked will
happen through the structure of XIMPEL. On the highest level this is a XIMPEL presentation
seen as one entity (analogous to a book). The second highest level would be a subject (analogous
to a chapter). For the third highest level, parallel playback will be assumed, because the tougher
questions are found there — as can be read in this exploration. The third highest level are the
media types itself (analogous to a paragraph). These levels do not exist in isolation and can
interact.

The relevance to education is the ability to browse through content by a per second basis. This
has not been possible with XIMPEL or other hypermedia frameworks such as SMIL. The reason
it has not been possible is perhaps because it is a tough question to answer. It has not been
possible to find an implementation because there are too many questions, which this chapter
will reflect.

The relevance regarding the implications of parallel media playback is that without parallel
media playback, time scrubbing in XIMPEL would be an easier problem to solve. It would
still not be easy since parallel media playback is not the sole contributor for all the complexity
regarding time scrubbing, but it is a big contributor of it.

The area of research this exploration is benefiting from is design and human-computer interac-
tion.

6.2 Related work

Before we start getting into the wonderland that is time scrubbing, let us first look at related work
in order to have some background knowledge. Some researchers also decided to present their work on
YouTube. This approach seems to give a more intuitive introduction compared to reading the article
written about their work. The in-text citations of these papers are made bold (e.g. [1337]). When
you, dear reader, look at the bibliography a YouTube URL will be there for you, so you can watch a
demonstration of their work. Since we are going to look at time scrubbing systems it may be useful
to first see systems in action rather than read academic articles.

Previous research on time scrubbing and related video browsing methods has mostly — if not only
— been done for linear videos. In my own literature research I found that the biggest trend in time
scrubbing research has been manipulating objects in video [67, 93, 39, 27, 53]. The idea is that by
manipulating an object within the video, a user is able to scrub along.

Thumbnail like strategies are another way of doing this. For example, one study presented an interface
in which a user sees still images of the video in a grid on their smartphone. When a user taps on one
of these images, another set of still images are shown that are closer in time around the first tapped
still image [45]. Another example is a study that used still images in a tree like fashion. The deeper
levels presented still images for more fine-grained time scrubbing control whereas the levels closer to
the root node were more coarse [23].

Then, there is a line of research that improves the experience of time scrubbing in some sort of fashion.
For example, by implementing multiple time scrub bars [81], altering the time scrubbing experience
[77], by having automatic labels above or below the time scrub bar [37] or manual ones! or by altering
fast-forwarding functionality [14].

Specifically for our interest, time scrubbing or related video browsing techniques have been developed
purely for education and MOOCs. In one study, researchers improved the time scrub bar by looking
at user statistics. Sections on the scrub bar where it has been stopped at or played at most were
highlighted and when a user went over it with the mouse cursor it felt a bit resistant to continue to
a non-highlighted part. It furthermore offers a search bar to search text in the transcript, which is

IThe custom-made video player of the Harvard course CS50: Introduction to Computer Science does this.

o1

6. Exploration 5: exploring what time scrubbing mechanisms XIMPEL needs

mapped to the time it was said in the video. Finally, the most watched parts of the lecture have been
automatically summarized [52]. In another study, researchers created a complete system meant for
YouTube educational videos. They created a word cloud in which they utilized the x-axis (temporal
ordering in the video), y-axis (temporal spread), font-size (prominence) and font-color (level of acoustic
stress). They furthermore created a second word cloud that summarizes a part of the video. A third
feature they have are video slides that show points of interest for the next and previous slides, they
also have a time scrub bar, which indicates on some points the auditory stress on certain concepts
[101].

More information on this topic can be found in the literature review of Schoeffmann, Hudelist and
Huber [92]. The previous information has been found by conducting my own literature search. The
literature survey of Schoeffmann et al. is more comprehensive. However, the work of the following
authors is not included in the review [93, 39, 27, 53, 81, 37, 14, 52, 101]. This means that some work
of 2013 and 2014 that I cited is not included and all works that I cited before 2009 and the year 2015
are not included.

Most conclusions of the reviewers are relevant for our purposes with XIMPEL. The reviewers found
that many of the video browsing tools “try to follow metaphors from real life, such as film strips,
multiple parallel, displays and simulated tape recorders.” Also, “many interfaces make use of the third
dimension.” Most important of all, “it is also observable that many tools try to make navigation in
videos more convenient by using concepts like sliders with rubber band effects, direct manipulation
of objects and synchronized display of thumbnails” [92] It is important to note that these are all
conclusions based on what researchers and developers create. The conclusions cannot necessarily be
drawn for the user or user experience. As of now, it is still not known to what extent users are waiting
for these type of improvements.

The reviewers formulated their biggest critique related to it: many studies did not perform a user
evaluation. This means that a lot of studies have been peer reviewed and published on the idea of:
having a justification based on an intuition, looking for related work, designing an own system and —
in most but not all cases — presenting a prototype.

This criticism also applies to this thesis unfortunately. In my case there are two obstacles preventing
me from doing a user study. (1) My research direction is different and therefore there is a lack of time
to do user studies. (2) The only moment I would have corrected course on my thesis with regards
to reading this information would have been the beginning, around exploration 1. Exploration 5,
according to the time line of this thesis (no pun intended) is towards the end of it.

On another note, my own observation from the literature review is that very few theories and conceptual
ideas about user behavior have been formed. There is, however, one study that did look at user behavior
and attempted to infer a simple model out of that behavior. The researchers noticed that users mainly
use the time scrub bar or simply watch the video from beginning and forward skip in time by a little
bit, mostly using the mouse, and possibly restart the video to find what they need. What they did
not do was make an educated guess and immediately jump to a specific point in time [16].
Unrelated, but worth mentioning is that one study in the literature review called 360 degree viewable
video by the term hypervideo [66]. This may indicate that previous research on hypervideo between
1990 and 2009 is a bit forgotten and now everything that extends the idea of video could potentially be
called hypervideo. Perhaps a better name, to avoid confusion, would be surround video or 360 video.

6.3 Within subject time scrubbing in XIMPEL

Without the parallel media player, time scrubbing in XIMPEL is a straightforward concept. The way
one would scrub with YouTube can be copied and pasted to any media type in XIMPEL — including
text, images and audio.

52

6. Exploration 5: exploring what time scrubbing mechanisms XIMPEL needs

6.3.1 Time scrubbing: the difficulties introduced by the parallel player

However, combining time scrubbing with the parallel player makes it more complicated. Now, a subject
has control over multiple media types playing at the same time. The first question that make this
question complicated is: (idea 1) should the user be able to control time scrub bars of individual media
items? (idea 2) Or should the user be able to manipulate a global time scrub bar that will slide all the
media items at once? The next two figures show the distinction visually. The visual example is only
with videos. It is left as an exercise to the reader to imagine this with mixed media types (see figure
F.9 and F.10).

Manipulating the individual time scrub bars is still fairly straightforward (idea 1 and figure F.9), since
the interface does not change. The time scrub bar interface is simply displayed more often in the
XIMPEL application. The complicatedness, increases when one tries to answer the second question
(idea 2 and figure F.10). It could be argued to choose for either ideas (1, the local multiple time scrub
bars or 2, the global time scrub bar), both ideas need to have a conceptual realization.

Moreover, idea 1 and 2 could be combined together by having a global scrub bar and local scrub bars
(see figure F.11). However, user studies would need to be done in order to validate the concept. Most
web applications do not have multiple scrub bars, and therefore it might be a bit too overwhelming
for the user.

The limitation of marrying these ideas is that when a user time scrubs the global, one a design decision
needs to be taken. If a user already scrubbed one time scrub bar locally and then scrubs globally,
three different scrubbing situations could occur (see figure F.12, F.13 and F.14). Either the global
time scrub bar resets the local time scrub bar to the original mapping where the global time scrub bar
believes it to be. For example, a global time scrub bar is at 50%, so all the local time scrub bars will
be reset to 50%. Another possibility is that local time scrub bars that have been meddled with, will
move along according to the offset of the global time scrub bar. For example, the global time scrub
bar is scrubbed from 30% to 50%, representing a 20% increase. One local scrub bar has been scrubbed
to 75% prior. Then, it will increase to 95% and the other local scrub bars, that have not been meddled
with, will move to 50%. The final possibility is that the meddled local scrub bars do not move if they
are ahead of the global scrub bar, and will catch up and reset to the value of the global scrub bar when
they are behind. Figure F.12, F.13 and F.14 visually clarify these difficulties.

6.3.2 Time scrubbing: the difficulties introduced by users having choice

The real difficulty is introduced not by the parallel player but by XIMPEL and the nature of interactive
video and choice itself. One could ask herself or himself: if one scrubs from 30% to 50% but on the 40th
percentile of the time line an overlay should be presented with a choice, should that choice be known
to the user or not? The user may not know that there would be an overlay on the 40th percentile
and therefore may not be aware of the choice. The user may also be specifically skipping to the 50th
percentile, because the user knows there is an overlay there and wants to skip it.

In a single YouTube video this is less of an issue. YouTube overlays tend to be links to different videos
that are less coherent compared to a certain group of hypermedia applications in XIMPEL. The user
experience (UX) designers of YouTube presumably have decided that it is okay to skip these overlays.
But should the user experience of XIMPEL be similar?

Both UX proposals would need to be tested. And while it is easy to copy the UX of YouTube, it is a
less easy question to create a new UX in the case that overlays should be presented to a time scrubbing
user. In order to answer this question I am forced to take inspiration from other systems or create
something of my own and justify it.

Furthermore, is it desirable in XIMPEL presentations to inform the user that he or she is skipping
overlays? Or is it more desirable to inform the user it is skipping a moment of choice. In the first
scenario all overlays would need to be known by the user in advance. In the second scenario the user
only needs to know whether there is any overlay present at certain moments in time, it does not matter
how many overlays there are.

93

6. Exploration 5: exploring what time scrubbing mechanisms XIMPEL needs

For this question, I take inspiration from the time scrubbing mechanism that professor David J. Malan
and his colleagues have developed for the course CS50 at Harvard. The reason for that is because it
solves a similar problem and it was usable for me when I took the course years ago. The problem that
they solved is that during a lecture a student would be introduced to multiple topics or sub-topics.
Since the level difference between the students is quite big, some students may want to skip certain
topics. By creating a time scrub bar that allows students to knowingly skip a certain lecture topic,
they give the power (the choice) to students to do so. In other words, their problem is also a problem
about choice, albeit a different form of choice.

Figure F.15 will show the user interface design. Like CS50 we highlight certain points of the time scrub
bar. By doing this, the user is able to know when there will be a potential choice. When the user
hovers over such a point, the user will see all possible choices that he or she can make at such a point.
This interface is relevant for people who already went through a XIMPEL presentation. In some cases,
the XIMPEL author may want to disable this feature since not knowing when certain decisions ought
to be made potentially add value to the UX of a XIMPEL application.

Does this interface work well for one media item? Would such an interface scale for multiple media
items? For that dear reader I ask you to use your imagination. Imagine multiple media items, for
example, two videos, one audio and one image somewhere on the screen. Got it? Amazing! When all
media items have their own time scrub bar — or in the case of the image at least a time line which
you cannot interact with — then highlighting certain points on the time scrub bar or time line is not
an issue. In this way it does scale. However, it is also possible to put all the highlighted points at a
global time scrub bar. The possible disadvantage is that a user cannot identify to which media item
the choice belongs to, which is a piece of information that may or may not be important depending
on the XIMPEL presentation being played.

6.4 Between subject time scrubbing in XIMPEL

Now that I have outlined which possible design dilemma’s by having choice within XIMPEL and the
newly built parallel player introduces within a subject, let us look what interactive video or rather
XIMPEL itself introduces. What if we do not want to time scrub within a subject but between
subjects? From a user experience point of view this is entirely possible because users may experience
the interactive video as a whole, and perhaps they would want to skip certain scenes, or maybe skip
halfway.

It is important to understand that this is a wicked problem, meaning: “a problem with multiple
plausible solutions as well as multiple subjective interpretations of such solutions.” [68] The paper of
Carl Magnus Olsson, Staffan Bjork and Steve Dahlskog goes into detail about what wicked problems
are, how it relates to design (and game-design in particular) and how to deal with them [68]. For now,
it suffices to understand what a wicked problem is. In our case devizing solutions really means making
compromises between ease of use and having more information. I will present two different designs
which emphasizes one or the other. In order to see which design would be better, user studies would
need to be conducted for which I unfortunately lack the time.

We could show more information by having a screen that displays the full interaction graph of XIMPEL.
The user would be able to see at exactly which point a choice would be made and would be able to
scrub along the time graph (it is not a time line anymore) and land at the point where he or she
wants to be. The issue with this is that this may, in some cases, neglect the idea of interactive video.
By giving a user the possibility of seeing the interaction points, the author of a XIMPEL application
would be forced to give away a part of the surprise. An example of such a graph is shown in figure
F.16.

In normal time scrubbing this is not a problem. Consider a horror movie — where there are a lot of
surprises. When a person scrubs further along the time line, he or she has no idea what to expect.
This is because nothing is highlighted other than the time. With showing the full interaction graph it
may not only be needed to show where the interaction points are, but also which interaction points.

o4

6. Exploration 5: exploring what time scrubbing mechanisms XIMPEL needs

Whether users prefer a full interaction graph with only nodes and edges going out of nodes or also see
labeled possible interactions on the nodes would require user testing.

The simpler way of doing time scrubbing in XIMPEL is creating a scene skipping feature. With the
current capabilities of XIMPEL this is already possible. It is even possible to show all possible options
for the next scene as an overlay that the user could click or tap on. While it is a crude way of time
scrubbing, it is an easier interface and perhaps therefore more usable. An example of this is done in
the Zaanse Schans XIMPEL presentation?.

6.5 Interaction of within and between subject time scrubbing

When a user scrubs within a subject, as soon as the user moves to scrub time between subjects it begs
the question whether a XIMPEL application should remember the scrubbed state within the subject
or whether it should not. If it should, then the concept of time becomes slightly different. For example,
a user scrubs the 50th percentile of the fifth subject with the between subject scrubber, then if the
user left the state of that subject in a certain way it needs to be recalculated what it means to scrub
to the 50th percentile of it with respect to the offset of where the user left it. Imagine a user clicking
on the middle of the upper arrow between Menu De Bonte Hen and Tour of windmill De Bonte Hen
in figure F.16 (lets call this user action A). Then the user would be transported to the middle of the
video that is associated to Menu De Bonte Hen. In this hypothetical scenario the user then suddenly
clicks somewhere completely differently on an edge in the time graph (user action B). The user then
performs user action A again after a couple of second — perhaps of boredom. After these actions,
should a XIMPEL presentation remember that it already was playing from the 50th percentile, and
therefore conclude that since the user clicked on the middle of the edge again replay the 50th percentile
or add it as an offset? It depends on the intent of the author with their XIMPEL presentation, but
both are options.

There are two other possibilities that make the interaction for between subject time scrubbing and
within subject time scrubbing easier. The first possibility is alluded to in the previous paragraph,
which is not to remember the within subject state. For example, when a user scrubs to the 50th
percentile of the fifth subject, then a user would see the fifth subject playing at the 50th percentile
point in time, which is always the same, namely: the 50th percentile point in time of the fifth subject.
A second option could be to not intermix between subject time scrubbing and within subject time
scrubbing, but having two layers. In this design a user would first need to choose to which subject
they want to travel to and when that subject loads, only then is it possible to time scrub within that
subject. The latter option is easier to implement since separated conceptual concerns translates to
compartmentalized code (e.g. different classes and different files). One could imagine figure F.16 still
being shown in the upper right corner when a button is clicked. When the user clicks on a node, then
the subject is loaded and only then is it possible to scrub within the subject using time line sliders as
seen earlier in the section Time scrubbing: the difficulties introduced by the parallel player.

6.6 Conclusion

Implementing time scrubbing within hypermedia frameworks generates more questions and almost no
answers. This topic has not been explicitly studied and because of that this chapter has been written.
Specifically three areas with design related questions have been identified:

e Within subject time scrubbing.

e Between subject time scrubbing.

e The interaction of within subject time scrubbing and between subject time scrubbing.

2see http://classic.ximpelapps.nl/zaanseschans_html5

95

http://classic.ximpelapps.nl/zaanseschans_html5

6. Exploration 5: exploring what time scrubbing mechanisms XIMPEL needs

Another design topic written about — albeit in a less structured way — has to do with the overlay in
XIMPEL. Does the possibility of choice need to show up in a time scrub bar? If not, then we are done.
If it does, then there are three areas to consider:
o Presenting possible future overlays within a single media item (related to within subject time
scrubbing).
e Presenting possible future overlays within multiple media items and different media types (related
to within subject time scrubbing).
o Presenting possible future overlays while time scrubbing between subjects (related to between
subject time scrubbing).
Possible designs have been proposed and have been inspired from previous research. Presenting possible
overlays in the future could be implemented in a similar way the video player of CS50 or [37] do. Except
instead of showcasing summarized labels of what the video is about at that current point in time, the
labels will be about what overlays they are and what for effect they may have on the user. Inspiration
for within subject time scrubbing mostly came from the study that had multiple time lines in order
to fine-tune time scrubbing [81]. Knowing that it sometimes is useful to have multiple time scrub
bars gave rise to the idea to split time scrubbing up into a global time scrub bar and local scrub bars
(one per media item). The design approaches for between subject scrubbing have been inspired by
the research of [23]. Abstracting subjects away as a node and conceiving that it could be possible to
time scrub a whole graph has been sparked by the idea that it is possible to manipulate time through
multiple trees, such as the ones presented in [23].
A limitation of this exploration is that this means that a lot of research did not directly go into the
design of time-scrubbing within XIMPEL. The biggest example is manipulating objects within a video
[67, 93, 39, 27, 53]. Another example is research done on time-scrubbing systems within the context
of MOOCs. Ideas of user statistics [52], word clouds [101] did not make it. What did make it was
showing points of interests through overlays [101].
Another glaring limitation is that there is the implicit assumption that all media items have the same
time! This limitation has been found out too late in order to change the analysis, and it would make
matters most likely even more complicated. It would be odd to have a global time scrub bar track
everything in a relative fashion if one media item only takes 5 seconds of playback and another media
item 500 seconds of playback. The full length of the global time scrub bar has to be pegged to the
longest playing media item perhaps, but the implications of doing so would not be clear, especially not
if some media items have infinite time.
Future work could be done on doing user studies or by choosing a subset of all the possible designs
outlined in this chapter and directly implementing it. In the first case, user studies would need to
indicate to what extent users want to be able to have time scrubbing abilities. And high-fidelity
mockups are possible by using XIMPEL and local scrubbing. A target group of interest to test these
mockups with would be people who like to go to museums, since XIMPEL as a framework seems to be
rising in popularity. Another one would be students since they seem to be one of the most tech-savvy
mainstream general groups, and they are relatively easy to recruit.
Regarding implementation, the idea of what a media item is changes. Not only is a media item able to
track time but it is also able to scrub time. Moreover, in some design ideas this information needs to
be passed to something controlling the subject and when it changes to another. So the XIMPEL player
in XIMPEL JS or the Subject component in XIMPEL React need time-tracking and time-scrubbing
capabilities. These code entities need information from the media items, since it needs to know what
their internal playback position is.
One design and implementation approach is to stay close to the XIMPEL design philosophy, which is
to keep things simple and not to overthink it. At first I thought this meant: there is a global time
scrub bar which determine the time scrub bars of media items (this is exactly F.8), no possible future
overlays are shown at the time scrub bar and overlays could already be used to skip individual scenes.
However, because of the limitation regarding the global time scrub bar a more pragmatic approach is
to only allow for local time scrub bars. As future work this will be programmed into XIMPEL JS and
XIMPEL React as the attribute timescrubbing="true" (the default is false).

56

6. Exploration 5: exploring what time scrubbing mechanisms XIMPEL needs

Another form of future work would be to do a conceptual analysis on a partial global time scrub bar.
This would be a global time scrub bar that is linked to media items that a XIMPEL author believes
it should be linked with, and the unlinked media items have a local scrub bar (not connected to the
global one) or none at all. Showcasing the implications of this may yield to fruitful research efforts
regarding time scrubbing and hypermedia.

So, what needs the ability to go foreward and backward in time? A media item? A subject? A whole
graph? These are the three levels that have been discussed in this exploration. Despite that, there are
many stones left unturned and many corners regarding this research area uncovered. Indeed, it might
be clear: in this problem there is no rest for the wicked.

o7

Exploration 6: extending the
YouTube media type for media item
subject switch survival

Note: this whole exploration is written as a story. Why? Because it is the final exploration of course'.

Ending it on a more festive note seems appropriate.

Research Questions and Contribution

What possibilities do 3rd party developers have in order to extend XIMPEL? Before this explo-
ration 3rd party developers did not have the ability to dynamically alter the playlist in-memory
configuration. This is unfortunate, because to implement innovative functionality at the media
type level such a possibility needs to exist. This exploration shows one example of an innovative
feature that could be created with it: the media item subject switch survival (MISSS) feature.
By having this ability as a possibility for each media type, and by extension for each media
item, dedicated 3rd party XIMPEL developers are able to design a wider array of educational
experiences. This is also its contribution to the first research question regarding education.
There is a contribution to the second research question. The second research question is: (2)
what are the (technical and design) implications of parallel media playback? Without parallel
media playback this exploration would simply not have been possible for the MISSS feature
would not have meant anything relevant. If one media item survives the next subject switch
and goes to a next subject, then two media items would need to play. This implies that parallel
media playback would need to exist since more than one media item playing is the idea behind
parallel media playback. Therefore, a media item surviving a subject switch cannot play itself
since parallel playback is not supported.

There is no contribution towards the third research question.

As I was playing with the XIMPEL playlist I wanted to have some background music with my videos
via YouTube. I then noticed that I wanted the background music to continue, but it could not. It
could not continue because I was changing subjects. So I wanted for a media item to survive a subject
switch. I call this a MISSS, a media item subject switch survivor. But how could I do this? Hmm... I
wonder how. Could I signal to HTML5 that I want to keep a certain media item playing? All it needs
to do is not to detach.

I In terms of chapters, not counting appendix A, or the chronological final exploration which is arguably exploration
3 or exploration 7.

o8

7. Exploration 6: extending the YouTube media type for media item subject switch survival

After fiddling for hours I figured out that one way to do this is to put the model of the mediatype
into the playlistModel for a second time in the subjectModel, just before the subjectModel came
for which I wanted it to stop.

This was the code in YouTube. js:

var sqModel = new ximpel.SequenceModel();
sqModel .add (this.player.subjectModels ["lessonl"].sequenceModel.list [0].1ist[0].1list
[01);

this.player.subjectModels["lesson2"].sequenceModel.list [0].add (sqModel) ;

I also had to modify the stop function in the YouTube media type.

if (this.player.currentSubjectModel.subjectId !== "lesson3") {
this.state = this.STATE_PLAYING;
console.log(this.mediaModel) ;
this.onEnd(this.player.sequencePlayer.mediaPlayer.handlePlaybackEnd.bind (this)) ;
return;

So how would I solve this? I wanted to let the implementation of MISSS rest on the shoulders of the
media type developer, which is a pretty big ask since they develop plugin-like code and do not want
to change the core of XIMPEL. What was missing was internal knowledge about the mediaModel in-
memory configuration object for extending XIMPEL. Having access to that means that a media type
developer is able to add and remove this mediaModel to or from the in-memory configuration object
on the fly. The media type developer could now dynamically alter the completem XIMPEL playlist.
In the constructMedialtems method I added a fifth argument, the entire mediaModel. Since the
media type developer has access to the complete player object he or she could traverse the whole
in-memory configuration (i.e. the playlist) recursively and eventually add the media model wherever
their heart desires. The code on how to extend the media type is in appendix F and implemented in
XIMPEL JS.

I tested if nested parallel players would work and they do. The reason is because the first traverse
function searches for the media model that is needed. Therefore, it will always find what it needs (the
media model) and is at that point unconcerned with how nested this media model is. Furthermore,
the insertModel function will add the model to the nearest parallel model (e.g. "lesson3") of the
subject model just before the final subject model where it needs to stop (e.g. "lesson4"). In this case
the method of adding the mediaModel is a bit crude, since there is no concept of nesting. However, this
is not needed, since all that is required is for the mediaModel to signal the stop event to the XIMPEL
player after the subject switch from where it is dynamically inserted. For example, suppose a media
item needs to stop at a subject called lesson 4 and before lesson 4 there is a preceding subject called
lesson 3. By dynamically inserting the mediaModel into lesson 3, the stop event will be triggered
after the subject switch from lesson & to lesson 4, meaning the media item will be removed when the
XIMPEL player switches to lesson 4.

Finally, after writing all my code I could listen to my background music. I had a real MISSS since
YouTube videos could survive a subject change. I then thought about how to do this for non-parallel
(i.e. sequential) media and realized that it would be rather silly. A single playing media item does not
need to survive a changing subject since it is the only media playing! This means that this feature is
fundamentally made possible by the parallel player!

The only question that remains is: should this become a core feature of XIMPEL? I do not think
so. XIMPEL should stay true to its name and origin and be simple. I consider this feature to be
intermediate to advanced. Consider this, for more than 10 years the framework relied on the idea that
when a subject changes, all the playing media items change as well. It may confuse novice people —
new to XML — that it is also possible to let media items survive a subject change. It redefines the idea

99

7. Exploration 6: extending the YouTube media type for media item subject switch survival

of what a subject is and the definition may be less clear, which is fine if a media type provides that
as an advanced option for its instantiated media items, but not the framework itself. It should stay
XIMPEL, T mean simple.

Since we have one media type programmed in this manner it is possible to see how many people will
catch onto this idea in the workshops where XIMPEL is presented and demonstrated. If in those
workshops, people would like to have this as a core feature, then it may be a good idea to change the
framework and add it.

One way of changing the core framework is to not change it at all, but to increase the power of the
extensibility of the framework. Now, it is only possible to extend the framework through media types.
This is wonderful but has the limitation that a developer needs to sometimes duplicate code if he
or she wants to program the same functionality in other media types. Regarding a MISSS, what we
could also do is to create a JavaScript file that share utility functions — like the ones I wrote for this
exploration — and expose these functions for all media types.

Two types of future work could still be considered. (1) It currently is available as an attribute.
Perhaps there is a more intuitive syntactic form so that the MISSS follows more intuitively by reading
the code. (2) Currently, it is only possible to let a media item survive a subject switch for only one
subject. Maybe there are multiple subjects at which a media item should stop. If this feature gets
requested in upcoming XIMPEL workshops, then such a change should be made.

Addendum (months later). This feature has been added to the core of XIMPEL React, since I
wanted background music there as well. The reason it is added to the core of XIMPEL React and not
via a plugin functionality like in XIMPEL JS is because it simply was a lot easier to add it in XIMPEL
React as a core feature. Just as it was easier for XIMPEL JS to implement it as part of a plugin
extension. And while XIMPEL needs to stay simple, there is something to be said for implementing
a feature that has been explicitly described as part of the Amsterdam Hypermedia Model [42]. This
does mean that the architecture of XIMPEL React has a disadvantage, or perhaps not since it shows
XIMPEL React is less hackable. XIMPEL React would have been more hackable if it would have
seemed (or been) easier to implement the MISSS feature in its media types.

Addendum 2 (two months later after the first addendum). In the creation of a simple music
sampler in XIMPEL, one bug has been found regarding removing the media items when they were
stopped. The bug was that while the YouTube media type was able to dynamically add in-memory
configuration objects of its own model to the playlist, it was not able to remove them. A method
has been created to make this removal possible. Moreover, when models are dynamically added, a
property called isGlobal is set to true. This bug has not been found in XIMPEL React.

60

Discussion

The questions from the beginning were: what is the relationship between XIMPEL and education?
And how does XIMPEL need to be improved for it to better serve education? These questions have
been treated in a slightly more general sense by applying the question to hypermedia. Even though
XIMPEL is not a strict hypermedia framework, in this thesis it has mostly been treated as such. The
philosophy of developing XIMPEL is one where pragmatism and interactivity is favored over the ideals
of hypermedia. Therefore, it is quite hard to pinpoint what XIMPEL really is. Not to forget, it is
also a framework to gain a poor man’s immersion for games and one that is between storytelling and
gameplay [30]. Perhaps it is best described as a hypermedia framework for non-linear storytelling
and simple gameplay possibilities. With that said, it is clear it is mostly inspired on the ideals that
hypermedia had in the beginning phases of the world wide web.

Research Questions and Contribution

The discussion summarizes the explorations and presents future research. For this reason all
research questions are relevant. To remind the reader, all explorations have been relevant to the
first research question, which is: (1) how does XIMPEL need to be extended to contribute to
online education? For the second research question, only the fourth exploration did not provide
any contribution. The second research question is: (2) what are the (technical and design)
implications of parallel media playback? For the third research question, the first exploration
(to some extent), second exploration and sixth exploration did not provide any contribution
towards the third research question, which was: (3) what areas of research could XIMPEL
benefit from, and how?

The contribution of the discussion in particular is focusing on the future. The following topics
discussed in this chapter contribute to the first research question: (1) ways to extend XIMPEL
in its programmatic expression so that web developers have more control; (2) research on media
synchronization; (3) including media studies academics in the conversation about hypermedia;
(4) creating educational content and finding users; (5) future work regarding (a) gamification,
(b) animation, (c) augmented reality and (d) virtual reality; (5) going cross-platform on tablet
and mobile.

The following topics discussed in this chapter contribute to the second research question: (1)
time scrubbing from a mathematical perspective; (2) optional media playback.

The following topics discussed in this chapter contribute to the third research question: (1)
XIMPEL and the microservice architecture.

It is with pragmatism that the questions about education were implicitly answered. The relationship
between XIMPEL and education is the creation of online education. It has been possible to recreate a
lot of psychology massive online open courses (MOOCs) with XIMPEL since all they need are: video

61

8. Discussion

lectures, quizzes, scoring quizzes and text. The Zaanse Schans video shows one way of how this could
be implemented. However, it would not have been possible to recreate a computer science course. This
is why the terminal extension has been built in exploration 1, to explore and prototype how it should
be done. Prototyping computer science courses with a hypermedia framework is a new way to look at
computer science education. Another implication with parallel media play is that XIMPEL looks like
a LaTeX for PowerPoint, meaning that it can be used for general presentations. I personally tested
this to teach my mother about file systems, it also had quizzes to test whether she understood me.
One could create this with PowerPoint and now it is also possible to with XIMPEL.

However, only having a terminal window open without anything else is not really informative. The
second question on how XIMPEL needed to be improved for educational purposes answered itself
in two ways in exploration 2. First of all, the hypermedia ideal should be relaxed and be used as
inspiration, as it already was by the XIMPEL developers. This allows for the development of, for
example, a <terminal> tag as shown in exploration 1. Second, XIMPEL needed the ability to play
parallel media. This feature has also been identified as future work by Stefan Bruins, who ported
XIMPEL from ActionScript to JavaScript.

Now with these two explorations both questions were put on the background regarding this thesis.
One could always research deeper into a question but the theme of this thesis was exploring XIMPEL
(and hypermedia), not answering research questions as deeply as possible. This also was needed since
research on hypermedia seems to be a bit forgotten. The decision to look at another question rose
to the surface in the form of recreating XIMPEL in React in exploration 3. Switching to different
questions reveals more about the nature of hypermedia, which could lead to more potential avenues
of new research, which might mean that the research topic will be looked after a bit more. In short:
asking more questions is its own contribution.

Nevertheless, my supervisor and second reader asked me to reflect on the biggest research question
regarding education and put them in blue reflection boxes. One of the reasons to do this was because
I was still contributing to education, despite that the questions were operating in the background.
Another reason was to make me reflect. This reflection never stops. For example, just before handing
this thesis in, I realized that XIMPEL is a very good framework for demonstrating forms of procedural
rhetoric [6] and it might be an avant garde framework for developing applications that train tacit
knowledge (e.g. learning the process of user experience design or any other fuzzy process related skill).
Courses like human-computer interaction will benefit from XIMPEL showcasing all kinds of scenarios
regarding performing a week long design sprint, condensed in a couple of hours.

The question that came up during exploration 1 and 2 is: since the XIMPEL playlist almost looks
like a return statement from a render method in ReactJS, would it mean that ReactJS would help the
development of XIMPEL? The idea here is that it may help since XIMPEL has something in common
with the core philosophy of React: every tag has its own rules. Moreover, would the React ecosystem
and best practices help the development of XIMPEL?

The answer is: React does help. It also does not. It helps in the sense that mapping components to
XML tags makes the development of XIMPEL easier to reason about, mostly because this mapping
is explicit in the architecture of the React version of XIMPEL. Another advantage is that the XML
attributes are already parsed as props per React component. On another note, the ability to write React
Native and have cross-browser compatibility without thinking too much about it is exciting. However,
two areas of difficulty in the beginning for a new React developer are the fine-grained understanding of
lifecycle methods and best coding practices in React. Especially if a developer does not have knowledge
on both of these topics, it will take some time to become productive. The biggest disadvantage is when
components become too complex and they need to be compartmentalized. This has happened a little bit
by creating specific media type components (e.g. Image) as a render prop for a MediaType component
that had time tracking abilities which all specific media type components needed. All media types
have common tasks (e.g. time tracking), but this is not expressed in the XML playlist, which breaks
the one component mapped to one XML tag abstraction a bit. Another view could be that this is not
a disadvantage but a diagnosis that the XML specification of XIMPEL is not explicit enough.

The answer to the React ecosystem question is a definitive yes since the ecosystem allowed for ES6

62

8. Discussion

and using an XML parser in the form of a library. Writing ES6 helps because combined with React
it forces one to write quality code, which is the intention of the React library developers'. Having
an XML parser that does what one wants it to do means it saves writing code. Furthermore, the
technology is relevant today which means that motivated students could learn a relevant technology?.
It ties back to the first question as well: developing with XIMPEL helps education, and studying the
source code of the framework is educational as well. Credits have to be given to Anton Eliéns for this
idea, since he has nudged students into studying the ActionScript code of XIMPEL when I took his
class — and I did in fact study it. To conclude for exploration 3: while React on itself would not have
been enough of an improvement, combined with its ecosystem it (perhaps) is.
Does this mean that all XIMPEL development need to happen in React? This depends very much
on the team of the XIMPEL developers and mostly their personal goals. If the XIMPEL developers
are neutral, then yes since it has been argued that the XML specification of XIMPEL lends itself for
ReactJS. If they are not for some non-technical reason, then perhaps not. It could also be that two
versions co-exist of XIMPEL which is fine. XIMPEL has been mostly developed in an explorative
user-centric way after all [5].
There is no connection from exploration 3 to exploration 4. As stated before in this thesis I was
daydreaming. It furthermore is the topic which is removed from hypermedia as much as possible. It
is also the first exploration where the conceptualization of ideas has played a much more important
role than pure implementation. The question was: how to measure frustration within the users of
XIMPEL? A similar question has been asked for engagement, albeit a lot less emphasized.
In this exploration the minimal conditions needed to capture the data has been presented. One
of these minimal conditions is that facial expressions are captured since mouse data is not enough.
Furthermore, research in capturing frustration via facial expressions seemed confusing at best, which
is why capturing anger and sadness seem to be a better way to capture frustration. Not all instances
of anger and sadness have to do with frustration, but anger and sadness are possible consequences of
frustration [36, 102, 94, 89], are more universal [69] and also more well-studied.
Regarding the other metrics, some hypotheses have been formulated on how to detect frustration there.
Research on it has been scarce so it has been a mixture of literature and my own thoughts on how to
detect it. Future work of simply training models have been eluded to.
Exploration 5 and 6 have been natural consequences of the result in exploration 2: the ability to
play multiple media items. In exploration 5 it has been explored what the consequences are for time
scrubbing. Not all design issues with time scrubbing come from the parallel media player, the biggest
design issue starts to appear when one wants to time scrub between subjects. The parallel media
player does interact with the other design issues and makes them more complicated by default.
Exploration 6 asked the question on how to implement a media type that survives a subject switch
(MISSS). Normally, in XIMPEL it is impossible for a media item to survive a subject switch. Even
if the media would be played in the new subject as well it would suffer from refreshing issues and
rendering issues. It furthermore would forget its state, which for a YouTube media type might be
simple enough to save, but for a terminal media type this might not be the case. This feature is called
media item subject switch survival. This question could not have been asked if XIMPEL did not play
multiple media types within a subject.
And now we are here. To summarize these are the questions that have been asked:

e what is the relationship between XIMPEL and education?

e« How does XIMPEL need to be improved for it to better serve education?

¢ Does React and its ecosystem help for developing XIMPEL? If so, how?

e How does one measure and classify frustration and engagement in hypermedia frameworks?

e How should a time scrubbing feature be designed in XIMPEL?

1A good example of that this really is their intention is seen in their update on async rendering. See: https:
//reactjs.org/blog/2018/03/27/update-on-async-rendering.html

2This used to be the case for when XIMPEL was written in ActionScript and it eventually faded with the rise of
HTMLS5. This may happen again as well, especially since Adobe fought hard to keep it alive and still failed. However,
there is hope it may not since Facebook is behind React and has perhaps more resources than Adobe.

63

https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html
https://reactjs.org/blog/2018/03/27/update-on-async-rendering.html

8. Discussion

e How does a media type developer implement a media item surviving a subject switch?
In the style of the whatis command, here are one line answers:

e The quick yet effective creation of MOOCs through a simple declarative domain specific language
(via XML) that anyone can learn.

o It needs the ability to play parallel media and needs to have built-in applications as a tag.

e Yes, it helps because of useful libraries, better development practices, cross-browser compatibility
and the possibility to create mobile applications with a XIMPEL playlist.

o By capturing data from the mouse, what the user is viewing now and his or her facial expression.

o It depends, there are a variety of ways and it is not clear which one has a better user experience.

o By interjecting the model of the media item in the subject which has the leadsTo of the subject
on which you want the media type to stop.

8.1 Future Work

XIMPEL is a frontend framework. It used to have no connection to any backend. In some of the
explorations (1 and 4) it needed a connection with a backend. In both cases the solution has been
to create a NodeJS server and use websockets or XHR to connect with it. Any developer who has
a background in NodeJS or any other server-side micro framework will find this relatively easy to
do. Therefore, future work could go into specifically developing XIMPEL so that it would fit with
a microservice architecture. It could also be researched what the drawbacks and advantages are.
Independently, in Norway some backend programming has been done in Flask, which at the very least
hints at the idea that it is an intuitive architecture to have.

A more fundamental area of research and development is to make a hypermedia or hypermedia-
like framework that focuses on web developers. HTML5 has made hypermedia applications more
approachable through the use of HTML, CSS and JavaScript. More specifically, the video and audio
HTML tags and their respective JavaScript APIs make this possible. What has not been made easy is
the concept of overlays, which is what forms the hyper part in hypermedia. So a library that focuses
on this might help. There are already solutions out there [65, 7]. However, they do not focus on
hypermedia. They focus on more specific use cases.

Other fundamental future research is a literature review on media synchronization. The AHM and
SMIL made this a huge topic. XIMPEL does not make this a huge topic at all. However, the
justification regarding not making that a huge topic seems to be lacking. Hence, a literature review
may help to elucidate what justifications there are for either perspective, and perhaps there are more
perspectives to consider.

Partially fundamental and partially not, the implementation of exploration 4 (classifying frustration)
and 5 (implementing time scrubbing) are future work. Both are bachelor or, depending on how far
one goes, master theses on their own. Other than the further implementation of exploration 4, there
is more future work regarding that area (see the future work section of exploration 4). Exploration
5 has its own challenge in that it is mostly a requirements issue and design issue, which falls in the
domain of human-computer interaction.

Other extension features that are more in the vein of applied research is the ability to automatically
switch subjects without the user driving it. See exploration 7 for that claim in appendix A 3. It is
possible to switch from a subject to another by branching with a leadsTo tag. The limitation of this
tag is that it only switches once automatically. If it would switch more in an automatic fashion, then
media items surviving subjects could be manipulated better, by being deleted one by one (if needed)
in automatic fashion.

The first paragraph about fundamental future research was about focusing on web developers. A
similar brand of future work would be to recreate XIMPEL through the use of web components. This
would not mean that XIMPEL would be exactly the same. The benefit that one would attempt to
have using this approach is the ability to create a playlist or several playlists within an HTML file.

3While a relevant exploration regarding the research question of education, it clearly was outside of the project scope.

64

8. Discussion

This would be useful for web developers who want the full ability of HTML, JavaScript and CSS but
also want the functionality that XIMPEL tags provide. Another possible way to achieve this is reuse
the media type components from XIMPEL React and develop a ReactJS application, which may very
well be a much quicker way to achieve this since the media type components already exist — they may
need to be adapted a little.

Moving away from fundamental research and the web, a collaboration between media studies re-
searchers and computer scientists could be made. The amount of knowledge about media from a more
conceptual point of view taught to computer science students is close to zero. Because of this, people
with a background in computer science know the technicalities of media but not really what it is. It is
likely that this is also the case for hypermedia. Interdisciplinary research on the boundaries between
(hyper)media and applications could be done. Or maybe it is not research but simply cross-over lec-
tures at universities. For example, teaching XIMPEL to media students and having a discussion with
them about (hyper)media.

From a more technical point of view the idea of MISSS challenges the idea of subjects. There are
different ideas to think about hypermedia, for example, the AHM thought about media items needed
to be put in different tracks, akin to musical instrument tracks in a digital audio workstation such as
GarageBand, Cubase or Logic Pro. A question could be: how can one fully re-imagine a hypermedia
framework from the ground up?

Regarding education, it is simple what needs to be done for XIMPEL. Content is king. Right now
XIMPEL has no king. Therefore, XIMPEL needs content, educational content. This will show how
usable XIMPEL is right now to current XIMPEL authors. Strengths and weaknesses will surface. It
is clear that XIMPEL will occupy a niche in the prototyping space. The real question is: could it also
occupy a space in production, and if so, is that already the case or does it need to be improved?
Another avenue of future research regarding education is to investigate the cross section between
hypermedia and website annotation. The web is, for some reason, almost not annotated! Why do
users not remix the web more? It should be possible. The value that XIMPEL would bring is to have
a simple language that would allow for annotation. Creating a list of iframes with additional media
items from other media types is simple.

The thesis itself showed a lot of implications regarding the parallel player. More future studies could
be done on focusing what the implications of sequential media playback, parallel media playback and
parallel media playback including applications are. One could say that this thesis is a contribution to
that, but there is more to explore. Especially mathematically, for example, what if all time scrubbers
knew the playback position of all the other objects it has a relationship with, how many connections
would there be? Take for example, a scrub time graph, a global subject scrub time line, and 5 media
items within that subject having scrub bars. 7 time scrubbers in total being connected to each other is
n(n—1)/2 with n = 7 so it is 21. Perhaps the mathematical implications are already solved problems
in mathematics, but they are not yet uncovered within the realm of hypermedia.

Another area of future research regarding media playback is to introduce a third type of media playback,
which is the optional media item. This feature exists in SMIL [50]. Though before implementing this
an analysis needs to be done. The question would be: to what extent could optional media playback be
modelled with a combination of MISSS, subjects and conditional subject switches via a score? It may
be the case that it already is possible since the conditionality can be modelled via scores and different
subjects. Despite the fact that it may be possible, another related question is if it is possible to model
the same level of fine-grained control since SMIL has it on a media item basis and with XIMPEL it is
one level up: on a subject level basis.

XIMPEL is an amazing framework to do gamification studies with regarding score. At the time of
writing my thesis I did not realize this, otherwise I would have done it. Gamification research seems
to focus too much on points*. And in my experience non-game designers who do not play digital
games believe that simply showing points is enough. With XIMPEL the claim of showing points being
motivational in itself can easily be tested. They can be tested against: no points and points with

4A claim I remember from my game studies master, unfortunately I do not know any articles that back this claim
up.

65

8. Discussion

meaning. What are points with meaning in XIMPEL? Simple, points that are related to conditional
subject switches. When points are connected to subject switches they inherently mean something,
because points are part of a mechanism of determining what content a user gets to see. This study
could be done in collaboration with psychologists and would have three testable conditions: no points,
showing points, connecting points to conditionals (which is basically the equivalent of an if-statement).
Gamification and animation go hand in hand. SMIL has animation capabilities. It needs to be
researched whether XIMPEL could use that specific language as a media plugin, or that SVG is a
better format. Adding animation capabilities to XIMPEL will create a richer experience to users. It
furthermore may be needed for hypermedia presentations or applications used in production, since
some of these may need a certain type of polish that only animation can provide.

Other than animation, perhaps something closely related that I did not look at are augmented reality,
mixed reality and virtual reality. It could be researched how they intersect with hypermedia and
perhaps added to the framework. A simple example is: having a smartphone that is aware of your
location, and then overlaying some piece of information next to the designated landmark of said
location on the smartphone. This research could go hand in hand with XIMPEL being ported for
binary mobile applications.

Finally, this section could be a thesis on its own. A lot of topics have been touched in this thesis which
all was about exploring XIMPEL and exploring the nature of hypermedia. The final future work
recommendation is the one that may enjoy a high priority since it will elevate XIMPEL to another
device type: mobile. Creating a version in which it is possible to create mobile phone applications with
XIMPEL seems the most interesting use case of using a hypermedia framework like XIMPEL, simply
because it makes a certain collection of mobile phone applications a lot easier to make. Therefore,
XIMPEL needs to be ported to React Native. An amazing example of this is: tablet questionnaire
applications for psychology research (ok, 2 device types!). There is a real need for this. Take the
Vrije Universiteit as an example: it employs its own iOS programmers to create such applications for
psychologists and education researchers. An example of such an application is the SIVT iPad app
(Sociale Informatie Verwerkings Test, English: Social Information Processing Test). It is a test for
young children with an IQ between 50 to 85 to see how well they recognize certain social situations
[80]. For example, they see a clip of a social situation and they ask a question about it. With XIMPEL
it would not take a team of developers a year building it?. It would be a month.

51 have built the first version of the iPad app and know from my ex-colleagues that it did indeed take a year to build.

Postface

Doing this thesis project has been an emotional rollercoaster. During most of my study program I
focused on study speed. I was on track finishing 9 years worth of study within 5 to 6 years of studying.
Then my master thesis for computer science got rejected because of a bureaucratic technicality. T asked
permission to my supervisor to be relieved of that technicality a year prior, which I was. However, a
year later that permission was revoked and my thesis was not considered to be up to the standards of
a computer science thesis. This sent me in a tailspin and I do not know if I became better because of
it. I choose to think of it as my first serious exercise in Stoicism.

At the time, it put me in a unique situation. Do I appeal to the examination board? It was a thought
in my mind, but I wanted to go out like an academic, not like a lawyer. I decided to throw away my
old game studies thesis about gender (it was an okay thesis but not stellar) and handed my computer
science thesis in as my game studies thesis at the University of Amsterdam. It was the first time that
I decided to focus on quality. The consequence had a good effect and a terrible one. The good: 1
graduated cum laude because of it and I could truly feel that I belong somewhere in the educational
game creation space. The bad: studying has taken me 8 years. I am now 29 years old and I feel behind
my peers.

It is this focus on quality that allowed me to be daring and as truthful as possible with my final
thesis, or with this postface for that matter. It furthermore meant daring to say no to the conventions
of academia. It is about being truthful about the process of science. Or being truthful about why
something is not science, but why it still would be relevant to science and perhaps as important. In my
interpretation: academia should be concerned about knowledge that could be considered objectively
true or at least very reliable and helpful in the broadest sense possible. Being truthful about the process
of science is part of that, as is creating tools that will help us to uncover more truths. Therefore, I
believe a startup like Codecademy to be academic, because it teaches more people to program, which
may help in gathering new knowledge. Another example is Mechanical Turk from Amazon. Improving
the process of finding participants is a major innovation in the field of social sciences. Why has this
been invented by Amazon? Why not by a university? To me it seems the incentives are wrong.

So I am daring according to myself. Yay! But a more interesting question might be: how do I evaluate
my own work? At first, when I read through my own thesis it seems very confusing. This is partially
because I secretly tried to do three theses. One was about extending XIMPEL (with emphasis on
XIMPEL for education), one about porting XIMPEL (and evaluate whether such a port is useful) and
one about classifying frustration. It furthermore seems confusing because when I read the thesis, I find
that I hold conventional academic standards in my mind. What specifically is my research question? I
seem to switch a bit. In this case I do not believe it matters too much because the findings uncovered
are interesting in its own regard. But it does give a confusing feel.

Specifically, for every exploration I have the following to mention: my first two explorations demon-
strated to me that having the option for extensibility through media types is a necessity for modern
hypermedia since it allows hypermedia to integrate into a framework that embraces hypermedia, or
subsumes it. It does not matter as long as it is useful. What I believe to be my most important
contribution regarding the first two explorations is: hypermedia will die unless it can integrate into

9. Postface

something larger!. The document model of the web already seems non-existent, it is all about web

applications. The biggest factor of this paradigm shift is the focus on the development of HTML5
and JavaScript. HTML5 was probably a direct contributor regarding why SMIL was not further de-
veloped. So it makes sense that for hypermedia to survive, it must be possible to create fully fledged
hypermedia applications, not merely hypermedia presentations. One contribution made in this space
is every hypermedia framework that has been ported to HTML5/CSS/JS since the output of such a
framework is a mix of HTML5 and CSS, which could be further dynamically manipulated through
JavaScript. This would not be possible with Flash and ActionScript.

Exploration 3 also showed something interesting: it shows that hypermedia on mobile may be a
worthwhile pursuit. Then why did I port it to React and not React Native? Because only by writing it
(after programming) did I realize it! I spent hours upon hours of programming only to come to such a
seemingly trivial realization. I feel like the inventor of the paper clip, it is trivial once you know it but
it takes a long time to get there. With that said, in order to reap the benefits of such interoperability,
the web version (i.e. React) needed to be made as well.

Exploration 4 and 5 is where I believe more conventional academic research lies. This means that it
is probably possible to get funding for it and it will teach humanity something truly new and unique
in a more conventional academic sense. Pursuing the themes in exploration 4 will teach us something
about the universality of frustration and how it relates to user experience. Pursuing exploration 5
will teach us a lot about time scrubbing and user experience. It may also lead to a more substantial
justification of why the time line model may not be the best foundation regarding media and time,
which the creators of SMIL have been saying for a long time?.

Moreover, I believe that I contributed a lot towards a reflection on the idea and ideals of hypermedia.
I know computer scientists are not philosophers, but to stand still for a bit and take a step back may
help the research agenda to produce more valuable research.

So to conclude my evaluation: I believe my thesis is valuable and relevant for hypermedia research,
though read with conventional academic standards in mind it may be a confusing read. And I tried
to do too much. Focusing on a narrow research question does have its benefits.

However, focusing on a narrow research question brings me to my second point. I sincerely hope that
exploration 4 will serve as one example of how to incorporate interdisciplinary literature. It is too often
that computer scientists make assumptions about human behavior and do not acknowledge that they
make such an assumption. Examples of that are in my bachelor thesis of information science about
Twitter and sentiment analysis. I hope to prevent this by showcasing that if a psychological claim is
made, then at the very least, do a literature search on it to potentially falsify the assumptions.

To close off, writing this thesis was ultimately the hardest part, not the programming. Having not
much of a structure and needing to invent my own structure was a challenge in which I believe I
partially succeeded, but there is also a lot of room for improvement. What I liked the most was to
do amazing things with IATEX. I would like to thank users moewe (a non-capitalized username) and
Heiko Oberdiek from tex.stackexchange.com for their helpful answers on creating amazing things
with I’TEX. The specific questions that were needed to create this document are put into an appendix.

IThough interactive video is very much alive!

2But I still do not know why, I do not remember that they explained themselves in their papers about the Amsterdam
Hypermedia Model or papers and documentation about SMIL. They just stated that they did not use it or did not find
it useful.

tex.stackexchange.com

Exploration 7: Hypermedia and
Gaming

During the semi-final thesis meeting we were down to the final details on how to end this project.
Ideas such as: create online documentation for what you programmed, put all source code online and
similar points of feedback were discussed. At one point while we were talking about exploration 4
and I told them that it is possible to create a point and click adventure with XIMPEL. In essence,
I claimed that it is possible to create subset of all possible games that could be created. Saying this
claim outright to my thesis supervisors made me reflect more on that statement. A question came to
light: is it possible to create games with XIMPEL?

While this question came to light it also became apparent that my thesis was finished. Changing the
thesis to reflect this particular exploration would require some rewriting. For example, exploration 3
would not be the secret final exploration anymore, exploration 7 would be. Moreover, it might have
been slightly confusing since this particular exploration is not in the intended scope of the original
thesis. This is because during the semi-final thesis meeting it did not become apparent that I should do
a whole new exploration. For this reason, this particular exploration has been added as an appendix.
The definition of what constitutes a digital game is a hairy one. In terms of this exploration I choose
the definition of Joris Dormans who defined a usable definition on what games are as formal systems.
The definition is as follows: “A game is a system in which players engage in artificial conflict, defined
by rules, that results in a variable, quantifiable outcome affected by player effort and ability.” [26] The
first part of the definition relates mostly to willing humans who want to play and content creation
(creating an artificial conflict). The second part of the definition, however, is mostly influenced by
a programming language. This is because it is (1) a system defined by rules, (2) the rules of such a
system results in a variable quantifiable outcome and (3) this outcome is determined by player effort
and ability. These three key elements are all able to be experienced by a certain subset of all computer
programs.

In order to find the answer on whether it is possible to create games with XIMPEL, the most important
question to answer is: to what extent is it possible to use XIMPEL as an intuitive programming
language? If it is possible to use XIMPEL as an intuitive programming language, then it is possible
to create at least a subset of games with it.

In order to demonstrate with this I decided to construct the following playlists in XIMPEL: finite state
machines, pushdown automata, a Turing Machine and a more intuitive mechanism that is equivalent
to a calculator. There was another reason why I decided upon this approach. My knowledge about
theoretical computer science is as good as any other computer science student who took one course
in it. Therefore, in order to augment my knowledge, recreating a Turing Machine in XIMPEL would
help me to understand how computability can be achieved (for similar projects see [104]%).

11 saw some of these projects years ago. In particular I knew about: Minecraft, Magic The Gathering, The Game
of Life made by Conway, HTML + CSS3, Super Mario World and PowerPoint. These projects served as inspiration to
start this analysis for XIMPEL.

A. Exploration 7: Hypermedia and Gaming

Research Questions and Contribution

This exploration relates to the research question: (1) how does XIMPEL need to be extended to
contribute to online education? While this exploration is not an extension of XIMPEL, simply
finding the imaginable possibilities will be an extension in the conceptual framework for all the
students who will learn about XIMPEL. Certainly other developers of XIMPEL did not know
to what extent XIMPEL has been Turing complete. They did not know what the implications
are towards education if it would be Turing complete.

Games are able to have an educational use, especially when already combined with a hypermedia
presentation this could greatly help education. More specifically, games are a specific form
of rhetoric that seems unlikely to be achieved by text, audio and video alone. This form
of rhetoric is called procedural rhetoric. “Procedural rhetoric is the practice of persuasion
through processes in general and computational processes in particular” [6, 4] People see certain
processes emerging in digital games and what these processes are and the inferences players
draw from it may influence their opinion one way or the other.

Research areas that XIMPEL may benefit from are: theoretical computer science and game
studies.

A.0.1 The computationality of XIMPEL

Creating a finite state machine in XIMPEL is trivial. Every subject is a state. However, there is
no explicit input field. A small extension to XIMPEL has been added, which displays what previous
states the user clicked through. The user clicks on an overlay to switch to a different state and it is the
content of the overlays that are shown on the screen. It is the user interaction that allows XIMPEL
to make computation as a finite state machine possible. This construction is shown in the following
video?.

To create pushdown automata a stack needs to be created. XIMPEL is only able to track scores.
Scores are individual key-value pairs in which the values are always represented as numbers. One way
to create a stack with a number is to represent the number in binary. Pushing to the stack could be
simulated by multiplying the score by 2 or 2 + 1. Popping a value of the stack could be simulated by
dividing a number by 2. These arithmetic operations are possible in XIMPEL with one caveat. These
arithmetic operations always need to floor the resulting answer. One method in XIMPEL needed to be
lightly rewritten in order to make this possible (the modified code is saved in the following repository
[85]). Like the finite state machine this form of computation must be driven by user interaction. The
constructed playlist is created for L = 0, 1|0™1"™ forn >= 0. This construction is shown in the following
video?.

A Turing Machine is able to be simulated by two stacks. The first stack could be the left side of the
tape and the second stack the right side of the tape. In this particular construction the top of the
second stack (right side of the tape) has been denoted as the head. The head is able to move left by
popping the top of the first stack and pushing it on top of the second stack. The head is able to move
right by popping a value of the second stack and pushing it on top of the first stack. However, this
posed to be a problem. Popping was simulated by dividing a score by 2.

While this pops the value of a stack it does not allow for the value to be remembered so that it
can potentially be pushed on top if the other stack. In this sense XIMPEL is not Turing complete.
However, since all the other forms of computation has been driven by user interaction it could be
interesting to see to what extent one needs to cheat in order to achieve Turing completeness. While
XIMPEL does not have any good constructs to simulate pushing or popping, it is possible to put
multiple overlays on a certain state. It turns out that since the language is small (0, 1), only four
overlays have to be shown in order to show all the options regarding popping one value of the stack

2http://www.youtube.com/watch?v=8BixNZulR24
Shttp://www.youtube.com/watch?y=—-IV8jiufG_E

II

http://www.youtube.com/watch?v=8BixNZulR24
http://www.youtube.com/watch?v=-IV8jiufG_E

A. Exploration 7: Hypermedia and Gaming

and pushing another value on the other stack. So the cheat is to use user interpretation in order to
simulate proper popping of a stack. By doing this all the read, write and move operations could be
supported. A construction of a Turing Machine is shown in the following video*.

Before we move on, I want to give proper attribution to who invented this idea of making a Turing
machine and how I learned about it. The idea of creating a Turing machine from 2 counters is from
Marvin Minksy [64]. However, I learned this technique through Wikipedia and reading a couple of
paragraphs (and then fiddling for a week to make it work) [79]. Finding when this information was
written is hard to determine as are the authors. What is not hard to determine is that the information
has been useful.

The biggest strength of XIMPEL (and other hypermedia frameworks such as SMIL) is that they are
state based. This allows for an easy construction of a finite state machine provided it is driven by user
interaction. The biggest issue regarding XIMPEL has been found by trying to construct pushdown
automata and a Turing Machine. The biggest issue is memory. More specifically, it is almost impossible
to allow one variable to know about the value of another variable. Could this be simulated?

The construction regarding the pushdown automata and the Turing Machine have been cumbersome.
Simulating a stack by displaying the binary representation of a number will not be seen as straight-
forward by XIMPEL authors. What may be more intuitive for XIMPEL authors are counters. From
this idea another question arose: is it possible to achieve Turing completeness with XIMPEL by using
counters?

In the following construction it will be demonstrated that it is possible to simulate one variable knowing
the value of another variable by using incrementers and decrementers. This answers the question of
whether one variable is able to know about another variable. Since it is possible for one variable to
know about another variable, it is also possible to subtract or add one variable value from another.
From this a simple calculator has been made. The leadsTo tag has been needed in order to achieve
this. And while it may be possible to demonstrate XIMPEL to be a language that is able to compute
everything, the process became less intuitive. The issue is: XIMPEL presentation authors will likely
understand the ideas of counters. However, they do not want a user to superfluously click tens of times
in order to see something meaningful. Perhaps automatic <leadsTo>® chaining (or in XIMPEL React
<rule> chaining) would help to make it a bit more intuitive and definitely more computational. A
construction of the calculator is shown in the following video®.

A.0.2 Conclusion

Since it has been demonstrated that, through user interaction, a Turing Machine is able to be made
in an unintuitive way, it is possible to create games with XIMPEL. It is clear that some games are
able to be made in an intuitive manner and others in a less intuitive manner. The question of what
type of games are able to be created in an intuitive fashion is impossible to answer unfortunately. It
seems already fairly unwieldy to create a point and click adventure. However, it is possible. One big
limitation of this exploration is that Turing completeness is driven by user interaction.

A.0.3 Future Work

For the sake of completeness I decided to try to create a simple shooter” and recreate Flappy Bird®.
While the shooter is limited, it works well when there is one enemy on screen, less well when there
are multiple on screen (they do not detach themselves from the DOM when clicked). The Flappy Bird
game should not be considered to be a recreation but a reinterpretation of the game. The Flappy Bird

4http://www.youtube.com/watch?v=7NhRtKYOVZQ

5In XIMPEL JS, leadsTo is as well a tag as an attribute

Shttp://www.youtube.com/watch?v=xwzXrl3hyR4

7See an example here: https://youtu.be/smaaZpPGisA?t=2m23s until 3:31. There is no adio commentary.

8See an example here: https://youtu.be/BX1S_ia0IcQ?t=2m39s, the commentary is in Dutch and not important.
Credits go to PewDiePie for playing it

ITI

http://www.youtube.com/watch?v=7NhRtKY0VzQ
http://www.youtube.com/watch?v=xwzXrl3hyR4
https://youtu.be/smaaZpPGisA?t=2m23s
https://youtu.be/BX1S_iaOIcQ?t=2m39s

A. Exploration 7: Hypermedia and Gaming

game is created by having a YouTube video as media, overlays on the exact same moment the bird is
supposed to flap and an artificial mouse event with the keyboard (via JavaScript) to artificially click
on the overlay. By doing this the game mechanics are the same, the user needs to tap the keyboard on
exactly the same moment as the person in the video. An interesting side effect is that this seems to be
a form of meta-gaming since the XIMPEL user needs to guess when the person on YouTube is going
to tap the screen on his or her phone. Future work would be a deepened exploration in the attempt
to recreate games with XIMPEL.

v

LaTeX Questions on
tex.stackexchange.com

Can LaTeX remember from which page the user jumped when clicking on a reference?
https://tex.stackexchange.com/questions/424779/can-latex-remember-from-which-page-the-
user-jumped-when-clicking-on-a-reference

BibLaTeX: generate which reference types you have in your .bib file for automatically
generating bibliography headings?
https://tex.stackexchange.com/questions/424984/biblatex-generate-which-reference-types-
you-have-in-your-bib-file-for-automati

BibLaTeX: automatically give one domain name its own category?
https://tex.stackexchange.com/questions/425036/biblatex-automatically-give-one-domain-
name-its—-own-category

How do I show programming keywords differently?
https://tex.stackexchange.com/questions/416160/how-do-i-show-programming-keywords-differently
Biblatex: How to automatically make in-text citations bold given a condition?
https://tex.stackexchange.com/questions/429874/biblatex-how-to-automatically-make-in-
text-citations-bold-given-a-condition

https://tex.stackexchange.com/questions/424779/can-latex-remember-from-which-page-the-user-jumped-when-clicking-on-a-reference
https://tex.stackexchange.com/questions/424779/can-latex-remember-from-which-page-the-user-jumped-when-clicking-on-a-reference
https://tex.stackexchange.com/questions/424984/biblatex-generate-which-reference-types-you-have-in-your-bib-file-for-automati
https://tex.stackexchange.com/questions/424984/biblatex-generate-which-reference-types-you-have-in-your-bib-file-for-automati
https://tex.stackexchange.com/questions/425036/biblatex-automatically-give-one-domain-name-its-own-category
https://tex.stackexchange.com/questions/425036/biblatex-automatically-give-one-domain-name-its-own-category
https://tex.stackexchange.com/questions/416160/how-do-i-show-programming-keywords-differently
https://tex.stackexchange.com/questions/429874/biblatex-how-to-automatically-make-in-text-citations-bold-given-a-condition
https://tex.stackexchange.com/questions/429874/biblatex-how-to-automatically-make-in-text-citations-bold-given-a-condition

oo =2} > [\

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

C

Appendix Exploration 2: XIMPEL

playlist that is possible with the
ParallelPlayer

VI

C. Appendix Exploration 2: XIMPEL playlist that is possible with the ParallelPlayer

Playlist C.1: this playlist can now be played thanks to the ParallelPlayer.

VII

D

Appendix Exploration 3 part 1:
The first time I tried to port
XIMPEL to React and failed

For porting XIMPEL to ReactJS I thought it had the following advantages:

e A lot of parsing logic could be done via ReactJS and Webpack by transforming the XIMPEL
playlist to a declarative language that is completely compliant with JSX. So there is no need to
create a parser.

e The virtual DOM would replace the in-memory configuration code that has been written for
XIMPEL. So there is no need to write in-memory configuration code.

e Cross-browser support is suddenly managed by the maintainers of the ReactJS framework.

o By teaching XIMPEL to students, you have to teach about ReactJS to students who want to
extend XIMPEL which introduces them to a lot of computer science concepts implicitly.

In short, the idea was to see if it is possible to make the ReactJS framework work for us. If this is
possible, then we as XIMPEL developers have a free lunch! Who does not want a free lunch?

To validate these assumptions I made a very simple prototype of creating a custom React component
in an XML file. The XML file would be read in by a React class that I programmed. Furthermore,
that custom React component would later on then correspond to a media item (such as a video or
image) in XIMPEL. What I quite quickly found is that I had to hack my way around the framework.
The first assumption that I invalidated with this is that a lot of the virtual DOM would replace the
in-memory configuration code. This has not been the case. While it is true that the XML-parser of
Webpack loads the XML in a data structure it is an object. Therefore, it is unknown which element
comes first. The advantage of the in-memory configuration that it is loaded in a tree structure. This
ease of use, or lack of it, has its implications for writing a framework.

Another assumption that came with a lot of hairy problems was the idea that this would be useful
for education since you could teach advanced students ReactJS. This is true. Unfortunately, I had to
program my way around the framework so much that this would also have been true for mere beginners
at XIMPEL. In order to explain this, I will have to explain the approach that I made and the code
that I created.

D.1 Methodology and implementation

To test whether to see if XIMPEL would benefit from ReactJS 1 created a simple toy playlist. The
idea was to create more and complex playlists as development would go along. If there would be a
significant roadblock for any reason, then the conclusion would be that porting XIMPEL to ReactJS
may not be a good idea.

In this toy playlist (see playlist D.1) the goal was to see if I could extract data from attributes and
handle nesting. The XML tag names themselves are arbitrary and for that reason I prefer short names.
The attributes text and sup both were meant for the display of text.

VIII

D. Appendix Exploration 3 part 1: The first time I tried to port XIMPEL to React and failed

<ximpel>
<hey text="You made it to the end of the course!" />
<hey text="Hello World!" />
<yolo sup="something">
<hey text="yay!" />
</yolo>
</ximpel>

Playlist D.1: A toy playlist

From an implementation standpoint (see Github), this playlist is loaded in as an attribute the Playlist
component called data. The Playlist component takes all unique keys and iterates over the data
via the .map array method. In this method the element name is taken and saved. The .map method
returns a lookup of the key in data which is chained to a different .map as well because in this .map
method one actual element is going to be rendered. In there it searches for a single child element
(multiple childs has not been implemented). It returns the parent and child.

The biggest issues with this code — other than the one child limitation — is that in order to render
the parent and child to eval functions need to be used. This is because the XML playlist needs to
be interpreted as React code. First of all, eval is evil for security reasons, which is also outlined by
Stefan Bruins who had to use it in order to port XIMPEL to JavaScript [8]. However, perhaps more
problematic is that using eval also necessitates using React.createElement as opposed to the usual
React syntax. This means that this code is fighting against the framework in order to push through
what it wants.

From a programming standpoint it is fine, except for the requirement that ReactJS was supposed to
help make development easier, not hinder it. Another issue that can be clearly seen in the code is
the lack of an in-memory configuration object. A React element itself is an object. The element that
needs to be rendered itself is referred to as \$ and possible children are referred to via a key. This
means that React element parents and React element children have no explicit hierarchy as XIMPEL
does have with its in-memory configuration object.

D.2 Conclusion

As I stated at the beginning of this chapter: “the idea was to see if it is possible to make the ReactJS
framework work for us. If this is possible, then we as XIMPEL developers have a free lunch! Who
does not want a free lunch?” The answer is, everyone wants a free lunch but unfortunately porting
XIMPEL to ReactJS is not a free lunch. It is possible but takes time and effort.

This time and effort is not worth it because ReactJS gives no benefit regarding the in-memory config-
uration object.

IX

Exploration 3 part 2: assessing the
benefits for porting XIMPEL to
React (successfully porting it to

React)

When I wrote the previous chapter I was finished with my exploration. However, by writing it up I was
forced to take a close look at the source code. Because I needed to look up the source code I needed to
look up the dependencies. And when I looked at the dependencies, I noticed that the XML parser of
Webpack uses a library that I did not look at. Upon further inspection this dependency of the XML
parser of Webpack showed that the XML parser was configurable! Unfortunately I did not see this
before, because I started developing too soon while not carefully reading the small documentation.

E.1 Webpack XML parser setup

There were two modifications that allowed for a much more successful exploration compared to the
first time. First, I modified the parser to have an explicit tree structure by preserving order between
siblings and parent-child relationships. In general, it is the question whether an XML document needs
this type of order preserved since some XML documents could be treated as an unordered set. But
for XIMPEL it is desperately needed that the XML document would be parsed as an ordered array.
This feature gives more power to the programmer, in the same sense that a Turing complete system
has more expressional power than a finite state machine. Without order there is chaos, and in this
particular case there would sometimes be no way to determine which media item (such as a video or
image) or subject should be loaded first.

The second modification helped a lot in code readability. While it is not as game changing or ground-
breaking as the first, code readability is a necessary requirement for a fruitful collaboration on any
software project. For example, the default setting to denote attributes of a parsed XML tag itself was
$, to denote inner text it is _ and children $$. I renamed this to: attributes, text and children
respectively.

E.2 Architecture and implementation

Since in this exploration I tried to explore if I could reimplement XIMPEL quickly, I did not consider
architecture — or even React best practices — all that much. In that sense there is quite a bit of
technical debt. Creating technical debt has also been done in order to find out what architectural
patterns work and which does not. Another reason to create technical debt is because I follow the
programming philosophy of Jonathan Blow, which is: try to produce as fast as possible and then when
you hit performance bottlenecks or any other bottleneck of any kind, only then try to be smart about

X

E. Exploration 3 part 2: assessing the benefits for porting XIMPEL to React (successfully porting it
to React)

solving that bottleneck. In some of his YouTube videos he goes in-depth how the code that he created
for his award winning games like Braid and The Witness only have 6 to 10 percent of optimized code
1| Tt has also been done in order to find in which regards one needs to fight the React framework and
in which cases React gives the developer wings to fly and develop certain features of XIMPEL a lot
faster.

E.2.1 SubjectRenderer: the one component to render everything else

The architecture is therefore simple and because of it in some cases a bit convoluted. It starts off with
the XIMPEL playlist already being parsed by Webpack which is exposed as the playlist variable
in App.js in React. In there, there is a React Component called SubjectRenderer, which renders
everything all at once in a given subject. It does this by having a method called createChildren
(children of a subject) which transforms the parsed XML playlist into React Elements. The render
function does not need to return a whole lot since the whole tree structure of React Elements that
needs to be rendered is in one variable called children (see code snippet E.1). From an architectural
standpoint, doing it this way makes parallel play immediately possible because the subjectRenderer
renders everything within a subject, all at once.

<div className="playlist">
{
<div className="subjectRenderer">
{ React.createElement (eval ("Subject"), {...element.attributes, text: element.text
}, children) }
 this.
handleMediaItemClick(e)}>>>
</div>
}
</div>

Playlist E.1: This is what is returned from the render function in the subjectRenderer React
Component

This approach poses one big problem: how does a sequence get rendered? In normal XIMPEL playlists
this still would not be a problem since in normal XIMPEL playlist, each subject tag only has one media
item that needs to be rendered (e.g. see the Zaanse Schans playlist). So the problem is not with old
XIMPEL playlists, it is with intermixing parallel play as opposed to sequential play within a XIMPEL
subject.

The normal convention for sequential play within XIMPEL is to have a <sequence> tag. I however,
decided against this. In the newest example apps, no one is using the <sequence> tag, everyone is
using the <media> tag. The current behavior of XIMPEL React media tags is that every media item
put in there (e.g. video or images) all get rendered at once, since that is what the subjectRenderer
does. I wanted to keep this functionality, because it makes sense, and in that way one does not need
to type the <parallel> tag which saves a bit of typing.

Instead, I opted for the possibility of putting multiple media tags in sequence (e.g. see code snippet
E.2) and programmed the ‘subjectRenderer* in such a way that if it detects multiple media tags, then
it plays these media tags compared to each other. The ‘subjectRenderer would play the next media
collection (with media items such as video or images in it) under one of two conditions: (1) all media
items have a duration element and after the longest duration has expired it goes to the next media
collection and (2) the user decides manually that he or she wants to play the next media collection by
clicking on a “next media collection” button.

<subject id="lessonl">
<media>
<message message="PWD Tutorial" duration="5" />
<video x="Opx" y="200px" width="400px" height="400px" duration="10">

1T forgot which video, but here is his channel: https://www.youtube.com/channel/UCCuoqzrsHlwv1YyPKLuMDUQ

XI

https://www.youtube.com/channel/UCCuoqzrsHlwv1YyPKLuMDUQ

10

12

14

16

E. Exploration 3 part 2: assessing the benefits for porting XIMPEL to React (successfully porting it
to React)

<source file="./pwd" extensions="mp4" types="video/mp4" />
<overlay score="+200" scoreld="yay" leadsTo="lesson2" width="600px" height="75
px" x="500px" y="500px" message="next lesson"/>
</video>
</media>
<media>
<textblock duration="5" message="Type in pwd and the terminal displays which
directory you are working in." width="600px" height="800px" x="Opx" y="100px" color
="#0f0" fontsize=’50px’ fontcolor="#fff"/>
<terminal x="800px" duration="25"/>
</media>
<media>
<message message="test" />
</media>
<youtube duration="10" id="DrgML20YxaA" width="200px" height="400px" x="1100px" y="
200px" stopAtSubjectId="lesson3"/>
</subject>

Playlist E.2: caption is in the comments to do

From an architectural standpoint the subjectRenderer is possibly a bit convoluted now. Its basic
functionality is to render everything in a subject all at once, but it modifies the children tree full of
React Elements in order to allow for the intermixing of parallel play and sequential play. The reason
this is perhaps convoluted is because this subjectRenderer does not only render subjects, it also
controls how it renders the subject. So, for a next implementation one needs to look if there needs to
be some form of modularization here.

E.2.2 Creation of React Elements

This part explains how the createChildren method works in the subjectRenderer component. The
conceptualization of this method happened many months prior before its implementation and is one
of the big reasons why I wanted to explore if XIMPEL could be ported quickly to React.

The method starts with a parsed XML subject sub-tree. The method traverses and transforms every
XML parsed tag to a React Element via depth-first tail recursion. The exception to this rule is the
parsed subject tag, since that tag needs to be transformed at render time (see code snippet E.1), it is
basically a peculiarity of React.

In order to transform an XML tag into a React Element, the following needs to happen: (a) the
lowercase tag name needs to change to a name that starts with a capital letter, (b) the attributes
need to be extracted from the XML tag and (c) there needs to be recursively determined if there are
children of said XML tag. These three things are plugged into as three arguments (argument a, b and
c respectively) into the React.createElement api method. The magic happens when the capitalized
XML tag name (see a) gets evaluated by the eval function. By evaluating it, it allows a name to
correspond to a React component. The actual manner of how this looks like is shown in E.3.

children.push(React.createElement (eval (childName), {...child.attributes, text: child.
text}, grandChildren));

Playlist E.3: caption is in the comments to do

And that is the magic of createChildren. Every XML tag name corresponds to a React component!
When I started with exploration one and realized the similarities between the idea behind the XIMPEL
playlist and React, I realized that a XIMPEL playlist is a huge set of React Component invocations.
The XIMPEL playlist denotes which React component needs to be called.

XII

E. Exploration 3 part 2: assessing the benefits for porting XIMPEL to React (successfully porting it
to React)

E.2.3 Difference between media types in JS XIMPEL and XIMPEL React

This simple one to one mapping, which is also done in the JavaScript version of XIMPEL (JS XIM-
PEL)? allows for a clear separation of concerns. The difference between the JS XIMPEL and XIMPEL
React is that in JS XIMPEL this one to one mapping needed to be more explicitly programmed
compared to XIMPEL React.

Here is what is more explicit: JS XIMPEL has an in-memory configuration object, where media items
were modelled. In XIMPEL React, an XML tag maps one to a React component. Such a component
is capable of having properties (and state but that is not important for this argument). A React
component plus properties mimics an in-memory model of a media type.

Furthermore, a React component also provides render capabilities dependent on the Component state.
It is important to note that in XIMPEL React every media type Component like Video and Image
inherit from a React component called MediaType (which does not have the same functionality as
MediaType.js in JS XIMPEL), because all media types need to be able to do certain things (e.g. time
tracking or knowing whether it should play or not).

While it is a rough comparison: the MediaType from XIMPEL React seems to mimic some of the
MediaPlayer functionality of JS XIMPEL. The specific Media components in XIMPEL React are the
same as the specific media types (e.g. Image.js) in JS XIMPEL. This is a rough comparison, because
JS XIMPEL is created with a more robust architecture in mind. For example, videos or YouTube
videos ends up calling an ended method in MediaType.js JS XIMPEL, meaning ending media items
in JS XIMPEL is centralized. In XIMPEL React a YouTube video cannot end (at the time of writing)
and a HTML5 video does not end up calling the MediaType component. It first calls the hand1leEnd
function on itself (the Video component) and then calls the SubjectRenderer directly to change to
another subject via a leadsTo attribute.

Furthermore, at the time of writing, it is not possible for a video that has ended to switch to a next
media item if there happens to be one. Currently, it is only possible to switch to a next media item
if every media item has an explicit duration. This duration should be shorter in seconds than that it
takes for the HTML5 video media item to call handleEnd since handleEnd determines the next subject
via the leadsTo attribute. In general, certain media features in XIMPEL React are more localized.
Furthermore, while a large part of XIMPEL is implemented, it has not been implemented to a precise
specification.

E.2.4 Difficulties encountered with React elements and React components

In general, React Elements provide a whole lot. It replaces the in-memory configuration object and
complete trees of React Elements are readily available. There are however a couple of issues.

First of all, it is tough to introspect if a specific React element is currently attached to the DOM.
Comparing React elements or components on contents is too difficult because React elements and
React components are complex objects. A quick workaround is to only compare properties of React
elements or components but the danger of that is that it assumes that the XIMPEL playlist has no
XML tag with exactly the same type of attributes with the same type of values, which is a dangerous
assumption in itself.

Second of all, React decides when it renders components. Sometimes this has been a problem because
in some cases it would have been much easier to manually decide when a component should or should
not be rendered. This could be a difficulty of React or expose my lack of professional experience as a
React developer.

Third (edit: deprecated see ® of why I leave this paragraph here), when a subject changes it may still
play some of the same media types. It has different media items (e.g. a different path for a video)

2] know that both are in JavaScript, but ReactJS makes the difference. Hence, I call one version JS XIMPEL and
the React version: XIMPEL React.

3] leave this paragraph here in order to show the creative process between programming and writing. Writing things
down allows to make it more clear of what I am doing and that in turn improves the program as is demonstrated by this
paragraph.

XIII

E. Exploration 3 part 2: assessing the benefits for porting XIMPEL to React (successfully porting it
to React)

but it still needs to draw upon the same React components in order to render these media items (i.e.
the same media type). From the perspective of React, this means that the React components that
need to render the same media types should not be removed from the DOM. The difficulty associated
with this is that it also means that the state of this React component does not change. And in some
cases it can be relatively difficult to find a way to reset the state suited to play the new media item
that uses the same media type. This is because a Video component, for example, is not itself aware
which subject is playing. In the JS XIMPEL this is not a problem since every media type has a
reference to the XIMPEL player via its constructor function. In React it is not that simple. A media
type in XIMPEL React could use knowledge about the state of the SubjectRenderer. However,
the state of the SubjectRenderer is a local state of that specific component. Since there only is one
SubjectRenderer this could be solved by creating a static state, but that seems like an anti-pattern
to do because Facebook (the creators of React) encourage developers to create a unidirectional data
flow of state. Perhaps I could implement the parent state being passed as a prop to all the
React element children. After, stopping with writing and trying to implement a possible solution
I was forced to solve the biggest performance bottleneck that I created as technical debt in XIMPEL
React. The performance bottleneck was that upon each render, the sub-tree of React elements of one
subject would be recreated. Since React elements are complex objects and since the render method
can be called for any reason, this is computationally very expensive. While trying to implement the
idea of passing the subjectRenderer state as props to the complete rendered tree, the maximum
call stack depth would be triggered (i.e. this shows how huge of a performance bottleneck it is). By
refactoring the invocation of the createChildren method to the constructor and to the callback which
is triggered upon the moment a subject is changed, passing down the state of the subjectRenderer as
props to each mediaType is possible. This mimics the functionality of attaching a player object to a
media type as has been done in JS XIMPEL. I know that I can improve the architecture of XIMPEL
React by having made this change, but I do not fully understand how yet.

E.2.5 Overlays and scoring

Hypermedia applications have two important concepts: (1) media and (2) the fact that it is linked.
Overlays allow this linking mechanism to happen within XIMPEL presentations. From an implementa-
tion standpoint it is important to understand that while overlays are related to subject, since overlays
denote subject changes, they are not related to media types and media items. In that sense subjects
within XIMPEL and the subjectRenderer specifically within XIMPEL React, serves as a controlling
entity between media items and overlays.

In XIMPEL React I decided to tightly couple overlays and scoring. In JS XIMPEL this is not the
case, but I could not understand the various use-cases other than clicking an overlay. There were some
other use-cases (e.g. when a subject starts) but that is still possible to be modelled with overlays.
Furthermore, having smart links is inspired by Ted Nelson who has a strong critique on how links are
not smart enough in the current day World-Wide-Web.

The scoring mechanism has been easy to implement. In the playlist scores are made by having attaching
values to the ‘score attribute and the ‘scoreld‘ attribute. The ‘score‘ attribute supports values as “+1”
or “/5” and will apply the operation, including the value, accordingly. The ‘scoreld‘ attribute allows
for giving a specific variable name for the score, so any string that resembles a name would be an
appropriate value there which XIMPEL React accepts.

By creating a static score object on the overlay component and putting a method call handleScore
for everytime an overlay is clicked, the Overlay class will track any score that is being created within
XIMPEL. These scores can be displayed via additional media types. In the current, implementation
the Message media type shows a raw JSON output of scores produced within XIMPEL React.

One current implementation drawback is that overlays need to subscribe to repeating media items or
subject changes. This is possibly an architectural issue or an issue with React itself. I would not know
why it may be an architectural issue, but it does not seem generic enough to let an Overlay component
listen in on subject changes and repeating videos. The reason why it may be an issue with React itself

XIvV

E. Exploration 3 part 2: assessing the benefits for porting XIMPEL to React (successfully porting it
to React)

is because the state of the overlays need to be resetted if media items repeat.

E.2.6 Data flow within XIMPEL React

The data flow within XIMPEL React tries to follow conventional ReactJS philosophy: try to have a
unidirectional data flow as much as possible. However, sometimes this is not possible. If a child gets
a state change earlier that a parent also would need to know, then it in some cases becomes difficult
to do so. Conventional philosophy suggests to lift state. However, this has not always seemed to be
possible, but furthermore it makes code readability worse. Moreover, it goes against the question of
whether it is possible to reimplement XIMPEL with ReactJS quickly.

So instead of lifting state I used a trick that JS XIMPEL also used. I used a publish subscribe system.
In the current implementation there are six publishers, six subscribers and five topics. This is small
enough to oversee. If it gets an order of magnitude bigger, then another system needs to be considered,
such as Redux.

E.2.7 Conclusion

XV

© ~ ot w —

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

I

Appendix Exploration 6: the code
needed in YouTube.js for a partial
subject change

XVI

Bibliography

Articles

Dick CA Bulterman. “Specification and support of adaptable networked multimedia”. In: Mul-
timedia Systems 1.2 (1993), pp. 68-76.

Vannevar Bush et al. “As we may think”. In: The atlantic monthly 176.1 (1945), pp. 101-108.
Augusto Celentano. “Interactive web-based hypermedia coordination”. In: Multimedia Tools and
Applications 76.4 (2017), pp. 5511-5538.

Beiwen Chen et al. “Basic psychological need satisfaction, need frustration, and need strength
across four cultures”. In: Motivation and Emotion 39.2 (2015), pp. 216-236.

Open Science Collaboration et al. “Estimating the reproducibility of psychological science”. In:
Science 349.6251 (2015), aac4716.

Scotty D Craig et al. “Emote aloud during learning with AutoTutor: Applying the Facial Action
Coding System to cognitive—affective states during learning”. In: Cognition and Emotion 22.5
(2008), pp. 7T77-T788.

Sidney K. D'Mello, Scotty D. Craig, and Art C. Graesser. “Multimethod Assessment of
Affective Experience and Expression During Deep Learning”. In: Int. J. Learn. Technol. 4.3/4
(Oct. 2009), pp. 165-187. 1SSN: 1477-8386. DOI: 10.1504/IJLT . 2009 . 028805. URL: http:
//dx.doi.org.vu-nl.idm.oclc.org/10.1504/IJLT.2009.028805.

Manfred Del Fabro, Klaus Schoeffmann, and Laszlo Bészérmenyi. “Instant video browsing: a
tool for fast non-sequential hierarchical video browsing”. In: HCI in Work and Learning, Life
and Leisure (2010), pp. 443-446.

Peter J Denning. “Is computer science science?” In: Communications of the ACM 48.4 (2005),
pp. 27-31.

Venessa Funches. “The consumer anger phenomena: causes and consequences”. In: Journal of
Services Marketing 25.6 (2011), pp. 420-428.

Ankit Gandhi, Arijit Biswas, and Om Deshmukh. “Topic Transition in Educational Videos
Using Visually Salient Words.” In: International Educational Data Mining Society (2015).
Frank Halasz et al. “The Dexter hypertext reference model”. In: Communications of the ACM
37.2 (1994), pp. 30-39.

Lynda Hardman, Dick CA Bulterman, and Guido Van Rossum. “The Amsterdam hypermedia
model: adding time and context to the Dexter model”. In: Communications of the ACM 37.2
(1994), pp. 50-62.

Klas Thme et al. “Frustration in the face of the driver: A simulator study on facial muscle
activity during frustrated driving”. In: Interaction Studies (2018).

Peter Kuppens et al. “The appraisal basis of anger: Specificity, necessity and sufficiency of
components.” In: Emotion 3.3 (2003), p. 254.

Chanel J. Larche, Natalia Musielak, and Mike J. Dixon. “The Candy Crush Sweet Tooth: How
‘Near-misses’ in Candy Crush Increase Frustration, and the Urge to Continue Gameplay”. In:
Journal of Gambling Studies 33.2 (June 2017), pp. 599-615. 1SsN: 1573-3602. DOT: 10. 1007/
$10899-016-9633-7. URL: https://doi.org/10.1007/s10899-016-9633-7.

XVII

https://doi.org/10.1504/IJLT.2009.028805
http://dx.doi.org.vu-nl.idm.oclc.org/10.1504/IJLT.2009.028805
http://dx.doi.org.vu-nl.idm.oclc.org/10.1504/IJLT.2009.028805
https://doi.org/10.1007/s10899-016-9633-7
https://doi.org/10.1007/s10899-016-9633-7
https://doi.org/10.1007/s10899-016-9633-7

Bibliography

Fwa Hua Leong. “Fine-Grained Detection of Programming Students Frustration Using Keystrokes,
Mouse Clicks and Interaction Logs” In: Journal of Social Sciences 4 (2016), pp. 9-18.

Regan L. Mandryk and M. Stella Atkins. “A Fuzzy Physiological Approach for Continuously
Modeling Emotion During Interaction with Play Technologies”. In: Int. J. Hum.-Comput. Stud.
65.4 (Apr. 2007), pp. 329-347. 1SsN: 1071-5819. DOI: 10.1016/j.1ijhcs.2006.11.011. URL:
http://dx.doi.org.vu-nl.idm.oclc.org/10.1016/j.ijhcs.2006.11.011.

Britta Meixner, Stefan John, and Christian Handschigl. “STVA suite: an open-source framework
for hypervideos”. In: ACM SIGMultimedia Records 8.1 (2016), pp. 10-14.

Edward Melcer et al. “Games research today: Analyzing the academic landscape 2000-2014".
In: network 17 (2015), p. 20.

S. Milborrow, J. Morkel, and F. Nicolls. “The MUCT Landmarked Face Database”. In: Pattern
Recognition Association of South Africa (2010). http://www.milbo.org/muct.

Andrew Ortony and Terence J Turner. “What’s basic about basic emotions?” In: Psychological
review 97.3 (1990), p. 315.

JR van Ossenbruggen. “Processing Structured Hypermedia-A matter of style”. In: (2001).
Maaike van Rest et al. “De Sociale Informatieverwerkingstest (SIVT) Voor Jongeren Binnen
Gesloten Residentiéle Jeugdzorg.” In: Onderzoek en praktijk. Tijdschrift voor de LVG-zorg 12
(2014). The language of the article is in Dutch, pp. 31-42.

Klaus Schoeffmann, Marco A Hudelist, and Jochen Huber. “Video interaction tools: A survey
of recent work”. In: ACM Computing Surveys (CSUR) 48.1 (2015), p. 14.

Rajvi Shah and PJ Narayanan. “Interactive video manipulation using object trajectories and
scene backgrounds”. In: IEEFE Transactions on Circuits and Systems for Video Technology 23.9
(2013), pp. 1565-1576.

Paul Lucian Szasz, Aurora Szentagotai, and Stefan G Hofmann. “The effect of emotion regula-
tion strategies on anger”. In: Behaviour Research and Therapy 49.2 (2011), pp. 114-119.
Toshio Yamagishi et al. “Rejection of unfair offers in the ultimatum game is no evidence of strong
reciprocity”. In: Proceedings of the National Academy of Sciences 109.50 (2012), pp. 20364—
20368.

Conference Papers

[11]

[14]

[16]

[25]

[27]

Antonio José G. Busson et al. “A Hypervideo Model for Learning Objects”. In: Proceedings of
the 28th ACM Conference on Hypertext and Social Media. HT ’17. Prague, Czech Republic:
ACM, 2017, pp. 245-253. ISBN: 978-1-4503-4708-2. DOI: 10 . 1145/ 3078714 . 3078739. URL:
http://doi.acm.org.vu-nl.idm.oclc.org/10.1145/3078714.3078739.

Kai-Yin Cheng et al. “SmartPlayer: User-centric Video Fast-forwarding”. In: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. CHI ’09. YouTube: https :
//www . youtube . com/watch?v=-VGBOR1ZNwO. Boston, MA, USA: ACM, 2009, pp. 789-798.
ISBN: 978-1-60558-246-7. DOI: 10.1145/1518701.1518823. URL: http://doi.acm.org.vu-
nl.idm.oclc.org/10.1145/1518701.1518823.

Claudiu Cobarzan and Klaus Schoeffmann. “How do users search with basic html5 video play-
ers?” In: International Conference on Multimedia Modeling. Springer. 2014, pp. 109-120.
Ansgar E Depping et al. “Trust Me: Social Games are Better than Social Icebreakers at Building
Trust”. In: Proceedings of the 2016 Annual Symposium on Computer-Human Interaction in Play.
ACM. 2016, pp. 116-129.

Pierre Dragicevic et al. “Video Browsing by Direct Manipulation”. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. CHI ’08. YouTube: https://www .
youtube . com/watch?v=WcIy90344bI. Florence, Italy: ACM, 2008, pp. 237-246. ISBN: 978-1-
60558-011-1. DOI: 10.1145/1357054.1357096. URL: http://doi.acm.org.vu-nl.idm.oclc.
org/10.1145/1357054.1357096.

XVIII

https://doi.org/10.1016/j.ijhcs.2006.11.011
http://dx.doi.org.vu-nl.idm.oclc.org/10.1016/j.ijhcs.2006.11.011
http://www.milbo.org/muct
https://doi.org/10.1145/3078714.3078739
http://doi.acm.org.vu-nl.idm.oclc.org/10.1145/3078714.3078739
https://www.youtube.com/watch?v=-VGBOR1ZNw0
https://www.youtube.com/watch?v=-VGBOR1ZNw0
https://doi.org/10.1145/1518701.1518823
http://doi.acm.org.vu-nl.idm.oclc.org/10.1145/1518701.1518823
http://doi.acm.org.vu-nl.idm.oclc.org/10.1145/1518701.1518823
https://www.youtube.com/watch?v=WcIy9O344bI
https://www.youtube.com/watch?v=WcIy9O344bI
https://doi.org/10.1145/1357054.1357096
http://doi.acm.org.vu-nl.idm.oclc.org/10.1145/1357054.1357096
http://doi.acm.org.vu-nl.idm.oclc.org/10.1145/1357054.1357096

Bibliography

[45]

[51]

[66]

Anton Eliéns et al. “Clima Futura@ VU-communicating (unconvenient) science.” In: GAMEON.
2007, pp. 125-129.

Anton Eliéns et al. “XIMPEL Interactive Video-between narrative (s) and game play” In:
GAMEON. 2008, pp. 132-136.

Kiel M Gilleade and Alan Dix. “Using frustration in the design of adaptive videogames”. In:
Proceedings of the 2004 ACM SIGCHI International Conference on Advances in computer en-
tertainment technology. ACM. 2004, pp. 228-232.

Dan B Goldman et al. “Video object annotation, navigation, and composition”. In: Proceedings
of the 21st annual ACM symposium on User interface software and technology. ACM. 2008,
pp. 3-12.

Joseph F Grafsgaard et al. “Automatically recognizing facial indicators of frustration: a learning-
centric analysis”. In: Affective Computing and Intelligent Interaction (ACII), 2018 Humaine
Association Conference on. IEEE. 2013, pp. 159-165.

Wolfgang Hiirst and Dimitri Darzentas. “HiStory: a hierarchical storyboard interface design
for video browsing on mobile devices”. In: Proceedings of the 11th International Conference on
Mobile and Ubiquitous Multimedia. ACM. 2012, p. 17.

Daniel Karavolos, Anders Bouwer, and Rafael Bidarra. “Mixed-initiative design of game levels:
integrating mission and space into level generation”. In: Proceedings of FDG 2015 - Tenth
International Conference on the Foundations of Digital Games. June 2015. URL: http://
graphics.tudelft.nl/Publications-new/2015/KBB15.

Juho Kim et al. “Data-driven interaction techniques for improving navigation of educational
videos”. In: Proceedings of the 27th annual ACM symposium on User interface software and
technology. ACM. 2014, pp. 563-572.

Don Kimber et al. “Trailblazing: Video playback control by direct object manipulation”. In:
Multimedia and Expo, 2007 IEEE International Conference on. IEEE. 2007, pp. 1015-1018.
Rodrigo Laiola Guimaraes et al. “Synchronizing web documents with style”. In: Proceedings of
the 20th Brazilian Symposium on Multimedia and the Web. ACM. 2014, pp. 151-158.

Regan L. Mandryk, M. Stella Atkins, and Kori M. Inkpen. “A Continuous and Objective
Evaluation of Emotional Experience with Interactive Play Environments”. In: Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems. CHI ’06. Montréal,
Quéébec, Canada: ACM, 2006, pp. 1027-1036. 1SBN: 1-59593-372-7. DOI: 10.1145/1124772.
1124926. URL: http://doi.acm.org.vu-nl.idm.oclc.org/10.1145/1124772.1124926.

Lus A. R. Neng and Teresa Chambel. “Get Around 360&Deg; Hypervideo”. In: Proceedings of the
14th International Academic MindTrek Conference: Envisioning Future Media Environments.
MindTrek '10. Tampere, Finland: ACM, 2010, pp. 119-122. 1sBN: 978-1-4503-0011-7. DOI: 10.
1145/1930488 . 1930512. URL: http://doi.acm.org.vu-nl. idm.oclc.org/10.1145/
1930488.1930512.

Cuong Nguyen, Yuzhen Niu, and Feng Liu. “Direct manipulation video navigation in 3D”. In:
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. YouTube:
https://www.youtube.com/watch?v=YomeZfCo7P0. ACM. 2013, pp. 1169-1172.

Carl Magnus Olsson, Staffan Bjork, and Steve Dahlskog. “The conceptual relationship model:
understanding patterns and mechanics in game design”. In: DiGRA. 2014.

Suporn Pongnumkul et al. “Content-aware dynamic timeline for video browsing”. In: Proceed-
ings of the 23nd annual ACM symposium on User interface software and technology. YouTube:
https://www.youtube.com/watch?v=fqf _wb5JE6CA. ACM. 2010, pp. 139-142.

David Portugal et al. “Identification of an Individual’s Frustration in the Work Environment
Through a Multi-sensor Computer Mouse”. In: Human Aspects of IT for the Aged Population.
Healthy and Active Aging. Ed. by Jia Zhou and Gavriel Salvendy. Cham: Springer International
Publishing, 2016, pp. 79-88. 1SBN: 978-3-319-39949-2.

Melvin Roest and Sander Bakkes. “Engaging Casual Games That Frustrate You: An Exploration
on Understanding Engaging Frustrating Casual Games.” In: FDG. 2015.

XIX

http://graphics.tudelft.nl/Publications-new/2015/KBB15
http://graphics.tudelft.nl/Publications-new/2015/KBB15
https://doi.org/10.1145/1124772.1124926
https://doi.org/10.1145/1124772.1124926
http://doi.acm.org.vu-nl.idm.oclc.org/10.1145/1124772.1124926
https://doi.org/10.1145/1930488.1930512
https://doi.org/10.1145/1930488.1930512
http://doi.acm.org.vu-nl.idm.oclc.org/10.1145/1930488.1930512
http://doi.acm.org.vu-nl.idm.oclc.org/10.1145/1930488.1930512
https://www.youtube.com/watch?v=YomeZfCo7P0
https://www.youtube.com/watch?v=fqf_w5JE6CA

Bibliography

[91]

Jason M Saragih, Simon Lucey, and Jeffrey F Cohn. “Face alignment through subspace con-
strained mean-shifts”. In: Computer Vision, 2009 IEEFE 12th International Conference on. leee.
2009, pp. 1034-1041.

[101] Kuldeep Yadav et al. “Content-driven Multi-modal Techniques for Non-linear Video Naviga-
tion”. In: Proceedings of the 20th International Conference on Intelligent User Interfaces. TUI
"15. Atlanta, Georgia, USA: ACM, 2015, pp. 333—-344. 1SBN: 978-1-4503-3306-1. DOI1: 10.1145/
2678025 .2701408. URL: http://doi.acm.org.vu-nl.idm.oclc.org/10.1145/2678025.
2701408.
Books
[26] Joris Dormans et al. Engineering emergence: applied theory for game design. Universiteit van
Amsterdam [Host|, 2012.
[34] Paul Feyerabend. Against method. Verso, 1993.
[64] Marvin L. Minsky. Computation: Finite and Infinite Machines. Upper Saddle River, NJ, USA:

Prentice-Hall, Inc., 1967. 1sBN: 0-13-165563-9.

Book Chapters

[4]

(6]

W. Bhikharie and A.P.W. Eliéns. “XIMPEL for Education — inspiring creativity through sto-
rytelling and gameplay”. In: GAMEON 2015. Eurosis, 2016.

Tan Bogost. “Procedural rhetoric”. In: Persuasive games: The expressive power of videogames.
MIT Press, 2007. Chap. 1, pp. 1-64.

Chapters in a Collection

[83]

Manuel Rodrigues et al. “Keystrokes and clicks: Measuring stress on e-learning students”. In:
Management Intelligent Systems. Springer, 2013, pp. 119-126.

Master Theses

[8] Stefan Bruins. “The interactive media framework XIMPEL”. MA thesis. the Netherlands: Vrije
Universiteit Amsterdam, 2016.
Reports
[81] Heather Anne Richter et al. A multi-scale timeline slider for stream visualization and control.

Tech. rep. Georgia Institute of Technology, 1999.

Github Repositories

[7]
[43]

[49]

brightcove. Video.js Overlay. 2018. URL: https://github.com/brightcove/videojs-overlay
(visited on 03/28/2018).

Dan Michael O. Heggd. Microticks. 2016. URL: https://github.com/scriptotek/microticks
(visited on 04/30/2018).

Philip Jagenstedt, Michael Smith, and Anne van Kesteren. HT'ML Standard FAQ. 2017. URL:
https://github.com/whatwg/html/blob/master/FAQ.md (visited on 04/30/2018).

XX

https://doi.org/10.1145/2678025.2701408
https://doi.org/10.1145/2678025.2701408
http://doi.acm.org.vu-nl.idm.oclc.org/10.1145/2678025.2701408
http://doi.acm.org.vu-nl.idm.oclc.org/10.1145/2678025.2701408
https://github.com/brightcove/videojs-overlay
https://github.com/scriptotek/microticks
https://github.com/whatwg/html/blob/master/FAQ.md

Bibliography

Marek Kubica. node-rml2js. 2018. URL: https://github.com/Leonidas-from-XIV/node-
xml2js (visited on 04/26/2018).

mrhenry. Overlay.js. 2016. URL: https ://github. com/mrhenry/overlay-js (visited on
03/28/2018).

Audun Mathias @ygard and Melvin Roest. Why does the example only have 4 emotions, while
the emotionmodel.js has 6% 2017. URL: https://github.com/auduno/clmtrackr/issues/130
(visited on 10/17/2017).

Morgan Roderick. PubSubJS. 2018. URL: https://github.com/mroderick/PubSubJS (visited
on 04/24/2018).

Melvin Roest. XIMPEL Analytics Server. 2018. URL: https://github.com/melvinroest/
ximpel-analytics-server (visited on 05/04/2018).

Melvin Roest. XIMPEL FSM. 2018. URL: https://github.com/melvinroest/XIMPEL-FSM
(visited on 06/15/2018).

Melvin Roest. XIMPEL js. 2018. URL: https://github.com/melvinroest/XIMPEL-JS (visited
on 05/04/2018).

Melvin Roest. XIMPEL React. 2018. URL: https://github.com/melvinroest/XIMPEL-React
(visited on 05/04/2018).

Melvin Roest. XIMPEL Terminal Media Type Server. 2018. URL: https://github . com/
melvinroest/ximpel-terminal-media-type-server (visited on 05/04/2018).

Melvin Roest and Audun M. Qygard. Github Issues - I don’t get something in the fitting faces
article, does an SVM kernel when doing logistic regression really exist? Isn’t it just a linear ker-
nel? 2018. URL: https://github. com/auduno/clmtools/issues/11 (visited on 05/03/2018).

Hip Blog Posts From The Web

2]

[19]

[100]

[104]

Fabrice Bellard. JSLinuxz. 2011. URL: https://bellard.org/jslinux/vm.html?url=https:

//bellard.org/jslinux/buildroot-x86.cfg (visited on 06/12/2018).

Jason Cranfordteague. Program or be Programmed: The GeekDad Interview With Douglas
Rushkoff. 2011. URL: https://www.wired . com/2011/07/douglas-rushkoff/ (visited on
06/19/2018).

PhiNotPi et al. code challenge - Build a working game of Tetris in Conway’s Game of Life - Pro-
gramming Puzzles € Code Golf Stack Fxchange. 2014. URL: https://codegolf.stackexchange.
com/questions/11880/build-a-working-game-of-tetris-in-conways-game-of-life (vis-
ited on 06/12/2018).

Julian Togelius. The differences between tinkering and research. 2016. URL: http://togelius.

blogspot . com/ 2016 /04 / the -differences - between - tinkering - and . html (visited on
06/23/2018).

Alvin Ward. 24 Unintended Scientific Discoveries. 2015. URL: http://mentalfloss . com/

article/53646/24-important-scientific-discoveries-happened-accident (visited on
06/12/2018).

women-inventors.com. Ruth Wakefield - Chocolate Chip Cookie Inventor. 2006. URL: http:

//www .women-inventors.com/Ruth-Wakefield.asp (visited on 06/12/2018).

Andreas Zwinkau. Accidentally Turing-Complete. 2018. URL: http://bezalel . tuxen.de/

articles/accidentally_turing_complete.html (visited on 06/12/2018).

Hypermedia Companies

[28]
[99]

Eko. Eko. 2018. URL: https://helloeko.com/ (visited on 06/19/2018).
Wirewax. Wirewaz - Interactive Video. 2018. URL: https://www.wirewax . com/ (visited on
06/19/2018).

XXI

https://github.com/Leonidas-from-XIV/node-xml2js
https://github.com/Leonidas-from-XIV/node-xml2js
https://github.com/mrhenry/overlay-js
https://github.com/auduno/clmtrackr/issues/130
https://github.com/mroderick/PubSubJS
https://github.com/melvinroest/ximpel-analytics-server
https://github.com/melvinroest/ximpel-analytics-server
https://github.com/melvinroest/XIMPEL-FSM
https://github.com/melvinroest/XIMPEL-JS
https://github.com/melvinroest/XIMPEL-React
https://github.com/melvinroest/ximpel-terminal-media-type-server
https://github.com/melvinroest/ximpel-terminal-media-type-server
https://github.com/auduno/clmtools/issues/11
https://bellard.org/jslinux/vm.html?url=https://bellard.org/jslinux/buildroot-x86.cfg
https://bellard.org/jslinux/vm.html?url=https://bellard.org/jslinux/buildroot-x86.cfg
https://www.wired.com/2011/07/douglas-rushkoff/
https://codegolf.stackexchange.com/questions/11880/build-a-working-game-of-tetris-in-conways-game-of-life
https://codegolf.stackexchange.com/questions/11880/build-a-working-game-of-tetris-in-conways-game-of-life
http://togelius.blogspot.com/2016/04/the-differences-between-tinkering-and.html
http://togelius.blogspot.com/2016/04/the-differences-between-tinkering-and.html
http://mentalfloss.com/article/53646/24-important-scientific-discoveries-happened-accident
http://mentalfloss.com/article/53646/24-important-scientific-discoveries-happened-accident
http://www.women-inventors.com/Ruth-Wakefield.asp
http://www.women-inventors.com/Ruth-Wakefield.asp
http://beza1e1.tuxen.de/articles/accidentally_turing_complete.html
http://beza1e1.tuxen.de/articles/accidentally_turing_complete.html
https://helloeko.com/
https://www.wirewax.com/

Bibliography

[103] Zentrick. Zentrick - Make every video ad count. 2018. URL: https://www .zentrick . com/
(visited on 06/19/2018).

Other Online Sources

[1] Sophie Alpert. Discontinuing IE 8 Support in React DOM. 2018. URL: https://reactjs.org/
blog/2016/01/12/discontinuing-ie8-support.html (visited on 04/30/2018).

[3] Tim Berners-Lee. Tags used in HTML. 1992. URL: https://www.w3.org/History/19921103-
hypertext/hypertext/WWW/MarkUp/Tags.html (visited on 04/09/2018).

[15] Alan Chodos and Jennifer Ouellette. This Month in Physics History - June 1963: Discovery of
the Cosmic Microwave Background. 2002. URL: https://www-aps-org.vu-nl.idm.oclc.org/
publications/apsnews/200207/history.cfm (visited on 06/12/2018).

[20] Joel La Croix and Matt Hristovski. CPS 621 - SMIL Presentation W011. 2011. URL: https:
//www . youtube. com/watch?v=ZVA4UyyhNtI (visited on 11/09/2018).

[22] Inc. DataCamp. How to run R in the cloud (for teaching). 2013. URL: https://www .1~
bloggers.com/how-to-run-r-in-the-cloud-for-teaching/ (visited on 04/17/2018).

[32] Douglas Engelbart. AUGMENTING HUMAN INTELLECT: A CONCEPTUAL FRAMEWORK.
1962. URL: http://wuw.dougengelbart.org/pubs/augment-3906.html (visited on 04/24/2018).

[33] Douglas Engelbart. Implemented Hypermedia in the ’60s. 2018. URL: http://dougengelbart.
org/firsts/hypertext.html (visited on 04/24/2018).

[35] Mark Leighton Fisher. Tim Berners-Lee, the World Wide Web, and the Dexter Model. Journal
of Mark Leighton Fisher (4252). 2007. URL: http://use.perl.org/use.perl.org/_Mark),5C/,
2BLeighton%5C)2BFisher/journal/35016.html (visited on 09/29/2017).

[46] Hugo C. Huurdeman. Engagement with the Abel Prize via a Touch Table App. 2017. URL:
http://www.ub.uio.no/om/prosjekter/the-visualisation-project/news/abel-prize-
app.html (visited on 11/09/2018).

[48] Doug Engelbart Institute. Doug’s Great Demo: 1968. 1968. URL: http://wuw.dougengelbart.
org/firsts/dougs-1968-demo.html (visited on 06/24/2018).

[50] Jack Jansen. SMIL, Synchronized Multimedia Integration Language. 2011. URL: https://www.
youtube. com/watch?v=xqups1sS1HI&lc= (visited on 11/09/2018).

[70] Universitetet i Oslo - Universitetsbiblioteket. Invisible Interactions: Studying In-Library Usage
of a Movie-Related Touch Table Application (Explorative Study). 2017. URL: http://www.ub.
uio.no/om/prosjekter/the-visualisation-project/news/invisible-touch-table-
interactions.html (visited on 04/30/2018).

[72] Audun M. Qygard. Fitting Faces. 2014. URL: https://www.auduno.com/2014/01/05/fitting-
faces/ (visited on 03/28/2018).

[73] Audun Mathias @ygard. PDM Modelviewer. 2017. URL: https://www.auduno . com/clmtrackr/
examples/modelviewer_pca.html (visited on 04/30/2018).

[74] Audun Mathias Qygard. Twisting Faces. 2014. URL: https://www.auduno.com/2014/04/29/
twisting-faces/ (visited on 04/30/2018).

[79] R.e.s. et al. Two-counter machines are Turing equivalent (with a caveat). 2007. URL: https:
//en.wikipedia . org/wiki/Counter _machine#Two-counter _machines_are_Turing_
equivalent_(with_a_caveat) (visited on 05/26/2018).

[96] W3C. SMIL Current Status - W3C. 2017. URL: https://www.w3.org/standards/techs/
smil#w3c_all (visited on 09/29/2017).

[97] W3C and Thierry Michel. SMIL Current Status - W3C. 2016. URL: https://www.w3.org/
AudioVideo (visited on 09/29/2017).

XXII

https://www.zentrick.com/
https://reactjs.org/blog/2016/01/12/discontinuing-ie8-support.html
https://reactjs.org/blog/2016/01/12/discontinuing-ie8-support.html
https://www.w3.org/History/19921103-hypertext/hypertext/WWW/MarkUp/Tags.html
https://www.w3.org/History/19921103-hypertext/hypertext/WWW/MarkUp/Tags.html
https://www-aps-org.vu-nl.idm.oclc.org/publications/apsnews/200207/history.cfm
https://www-aps-org.vu-nl.idm.oclc.org/publications/apsnews/200207/history.cfm
https://www.youtube.com/watch?v=ZVA4UyyhNtI
https://www.youtube.com/watch?v=ZVA4UyyhNtI
https://www.r-bloggers.com/how-to-run-r-in-the-cloud-for-teaching/
https://www.r-bloggers.com/how-to-run-r-in-the-cloud-for-teaching/
http://www.dougengelbart.org/pubs/augment-3906.html
http://dougengelbart.org/firsts/hypertext.html
http://dougengelbart.org/firsts/hypertext.html
http://use.perl.org/use.perl.org/_Mark%5C%2BLeighton%5C%2BFisher/journal/35016.html
http://use.perl.org/use.perl.org/_Mark%5C%2BLeighton%5C%2BFisher/journal/35016.html
http://www.ub.uio.no/om/prosjekter/the-visualisation-project/news/abel-prize-app.html
http://www.ub.uio.no/om/prosjekter/the-visualisation-project/news/abel-prize-app.html
http://www.dougengelbart.org/firsts/dougs-1968-demo.html
http://www.dougengelbart.org/firsts/dougs-1968-demo.html
https://www.youtube.com/watch?v=xqups1sSlHI&lc=
https://www.youtube.com/watch?v=xqups1sSlHI&lc=
http://www.ub.uio.no/om/prosjekter/the-visualisation-project/news/invisible-touch-table-interactions.html
http://www.ub.uio.no/om/prosjekter/the-visualisation-project/news/invisible-touch-table-interactions.html
http://www.ub.uio.no/om/prosjekter/the-visualisation-project/news/invisible-touch-table-interactions.html
https://www.auduno.com/2014/01/05/fitting-faces/
https://www.auduno.com/2014/01/05/fitting-faces/
https://www.auduno.com/clmtrackr/examples/modelviewer_pca.html
https://www.auduno.com/clmtrackr/examples/modelviewer_pca.html
https://www.auduno.com/2014/04/29/twisting-faces/
https://www.auduno.com/2014/04/29/twisting-faces/
https://en.wikipedia.org/wiki/Counter_machine#Two-counter_machines_are_Turing_equivalent_(with_a_caveat)
https://en.wikipedia.org/wiki/Counter_machine#Two-counter_machines_are_Turing_equivalent_(with_a_caveat)
https://en.wikipedia.org/wiki/Counter_machine#Two-counter_machines_are_Turing_equivalent_(with_a_caveat)
https://www.w3.org/standards/techs/smil#w3c_all
https://www.w3.org/standards/techs/smil#w3c_all
https://www.w3.org/AudioVideo
https://www.w3.org/AudioVideo

Bibliography

Misc

[5] Winoe Bhikharie. XIMPEL Meeting (personal communication). Mar. 2018.
[29] A. Eliéns. private communication. 2017.

[44] Bos Herbert and C. Giuffrida. Binary and Malware Analysis (personal communication during
lecture). Sept. 2015.

XXIII

Figures

VRIJE
UNIVERSITEIT
AMSTERDAM

VU

XXIV

Figures

[) XIMPEL x [EJ Master x [Ig * Thesi x ' [master x

. Docum x [BlankD x {} horizon x {} Listings X (@ Messer x ' {} bibtex - x | G media: x [report- x / [c]_ Learntl x e

< C' @& Secure | https://www.codecademy.com/courses/learn-the-command-line/lessons/navigation/exercises/pwd?action=lesson_resume W B e z @ o o I
a

[code]cademy

O Learn

pwd

$ pwd

/home/ccuser/workspace/blog

pwd stands for "print working directory". It outputs the
name of the directory you are currently in, called the
working directory.

Here the working directory is blog/. In Codecademy
courses, your working directory is usually inside the
home/ccuser/workspace/ directory.

Together with '1s , the pwd command is useful to show
where you are in the filesystem.

Instructions

1. Let's continue with more commands. In the
terminal, print the working directory.

& Community Forums

® ReportaBug

¢ Learn the Command Line

Get Help

Figure F.1: A lesson in the Codecademy command-line tutorial. This lesson shows how to use the
print working directory command. The lesson has two important panes. The left pane shows the
lesson, while the right pane shows a tutorial.

XXV

Figures

[] [] B Master Thesis - Online LaTex - x [IJ Thesis | Trello x [Master_Thesis (1).pdf X / [d_ Learn the Command Line | Coc x () datacamp/datacamp-light: Co' x M.

- ® s & @ @ B8 r Al G [I :

Apps |[!/ TheVault :: Posts his... Portfolio crypto en a... [) Susan Piver: Buddhi.. @ Amazon.co.uk: Profil... i http://localhost:808... & Matthijs Pontier [Computer Graphics... & Brain Workshop - a... » [Other Bookmarks

< C' @ Secure https://www.codecademy.com/courses/learn-the-command-... ¥¢ O [T (EI

Learn the Command Line

Objective bash

$ 1s
brands.txt freight mountain racing

Bicycle World s

LEARN THE COMMAND LINE

= Bicycle World 0/16 ete Get Help
= Console Sources Elements Network Performance Memory Application Security ~Audits AdBlock React 91142 ¢ X
® O W™ g | View Group by frame Preserve log @ Disable cache Offine Online v
Filter Hide data URLs All XHR JS CSS Img Media Font Doc {5 Manifest Other
200 ms 400 ms 600 ms 800 ms 1000ms ~ 1200ms 1400ms ~ 1600ms 1800ms 2000ms ~ 2200ms 2400ms 2600ms ~ 2800ms 3000ms 3200ms 3400ms 3600ms 3800ms 4000ms 4200ms 4400ms 4600ms 4800ms

Name X Headers Frames Timing
© Al v [Entorrogex, for rample: web)?socket
Data Length Time
l{"evem“:"sync““‘params“:("ld“:"8381acef—b940—470a—8003—1621!45a76dc"“‘message‘ 85 13:24:12.035
4 {"id":7,"method":"ShellService.Sync", "result":{"status":false},"error":null} 76 13:24:12.103
l("event“:"sync“‘"params”:("id“:"8381Sce'-b940-47ﬂa-8003»1621145a7sdc”“‘message‘ 85 13:24:12.104
8,"method":"ShellService.Resize","params":[{"cols":109, "rows":8,"id":"83813cef-bJ40-470a-8003-1621f45a76dc"}]} 116 13:24:12.207
4 {"id":8,"method":"ShellService.Resize", "result":{"status":falseL."error":null} 78 13:24:12.309
id":9,"method":"ShellService.Sync","params":[{*messag :"83813cef-b940-470a-8003-1621f45a76dc"}]} 109 13:24:18.480
4{"id":9,"method":"ShellService.Sync", "result":{"status":false},"error":null} 76 13:24:18.585

102 13:24:18.588
125 13:24:18.589

L \\U001b[KS Is\n\n”

“Prands.txt freight mountain racing\\n"j>

4 {"event":"sync","params":{

4 {"event":"sync","params"

:"83813cef-b940-470a-8003-1621f45a76dc", "message:
"83813cef-b940-470a-8003-1621f45a76dc","messag

4 {"event":"sync","params"{ |d“:"83813Cef—b940—47ﬂa—8003—1621V45376dc"“‘message”) 86 13:24:18.589
1{"id":10,"method":"ShellService.Resize","params":[{"cols":109, "rows":8, "id":"83813cef-b940-470a-8003-1621f45a76dc"}]} 117 13:24:18.690
4{"id":10,"method":"ShellService.Resize", "result":{"status":false},"error":null} 79 13:24:18.803
1{"id":11,"method":"ShellService.Resize","params":[{"cols":109, "rows":8,"id":"83813cef-b940-470a-8003-1621f45a76dc"}]} 117 13:24:23.584
1{"id":12,"method":"ShellService.Resize","params":[{"cols":109, "rows":8, "id":"83813cef-b940-470a-8003-1621f45a76dc"}]} 117 13:24:23.611

1/ 45 requests | 0 B/ 1.0 MB transferred | Finish: 4.93 s | DOMContentLoaded: 2.33...

Figure F.2: Evidence that CodeCademy uses websockets to communicate with a terminal on some
server. The blue circles shows data that is sent from the client to the server. The red circles shows
data that is sent from the server to the client.

XXVI

Figures

x I M P E With a Terminal
Media Type S ®

O]
websocket ———» Is_|

Poweredby +

@ socket.io
[Desktop Documents ~<———— websocket > < D r(3\ ; \ ;

Standard
Input

Deskt

D(ejiunile)nts @
Standard
Output

@ s
\a THE BOURNE-AGAIN SHEL

Figure F.3: Communication example of the terminal media type. (1) The client sends a command,
for example 1s. (2) The NodeJS server sends this to a bash shell. (3) The bash shell sends a response
to NodelJS, for example Desktop Documents and (4) NodeJS sends that back to the client. Note that
this is an architecture for prototypes only. The bash shell should be replaced by Docker or Vagrant
in order to sandbox bash. Even then, possible commands in bash should probably be limited due to
undisclosed sandbox escape vulnerability bugs.

XXVII

Figures

Player
Y
SequencePlayer
Y Y Y
SequencePlayer ParallelPlayer MediaPlayer
Y A4 Y Y \ 4 \ 4 Y
SequencePlayer| |ParallelPlayer| | MediaPlayer | |SequencePlayer| |ParallelPlayer| | MediaPlayer MediaType —
Y Y
MediaType - MediaType -

Figure F.4: The original player architecture of XIMPEL. The media type gives rise to media which
can be: video, audio, image, text or a custom defined media type. This architecture has been pro-
posed and (partially) implemented by Stefan Bruins [8]. It has been demonstrated by me that nested
SequencePlayers have not been implemented and I also explained why this does not need to happen
in the beginning of this chapter. The diagram shows the possible valid children a player would be able

to play.

XXVIII

Figures

Player

A

SequencePlayer

A
ParallelPlayer MediaPlayer

Y

SequencePlayer | | SequencePlayer| - MediaType

| ParallelPlayer | | MediaPlayer | | ParallelPlayer | | MediaPlayer

\/
MediaType

Y
| SequencePlayer || SequencePlayer | MediaType | SequencePlayer || SequencePlayer |

|

Figure F.5: The current player architecture of XIMPEL. The media type gives rise to media which
can be: video, audio, image, text or a custom defined media type. The diagram shows which possible
players can be played but also how many players another player can play. A blue or red line indicates
that the player of which the line originates needs to choose between one of them. A black line means
that a player will be invoked by another player.

XXIX

Figure

App.jsx src
® = Untitled-5 ;Hth(; PR———
® = Untitled-4 odia
® = Untitled-3 v léadso="MenuDeBonteHen" repeat="true"
3 playlist.xml src M urce exteénsions="mp4" file="videos/Intro"
lay height="T88px" leadsTo="MenuDeBonteHen" \startTime="2" width="180px" x="1700px" y="890px"

S playlist_zaanse_sch... M
S playlist_zaanse_schans.x...
> index.html dist

extends Component {

s Ximpel extends Component {
ructor(props){

super(props);
console. log(props.playlist);

}

render(){
const playlist = this.props.playlist;
const element = playlist.children[0]; }

return (
div className="ximpel-root"

if(ximpel && $ && [props.playlist.attributes && props.p|
element ["#name"] === "playlist"? this.analytics new ximpel.Analytics()
Playlist {...element.attributes} text={element.text} playlist={element} this.analyticsfaddSubject(props.playlist.children[th
: this.analyticg.initializeAnalyticsEventHandlers()
p>You did not write the playlist tag, instead”you wrote {element["#name"]}</p $("#emotion_gontent").prepend('<h2>Emotion detection
$("#controlg").append('<input class="btn" type="butt
this.analyfics.startEmotionDetection();
}

Subject nds Component {
constructor(props) { class Media extends Component {
super(props); onstructor(props) {
console.log('Subject constructor', props.playlist); super(props)
his.state = { console.log('Media constructor', props.playlist);

currentChildNo: @ this.state = {

}

render () key: shortid.generate(),
const element = this.props.playlist.children[this.state.currentChildNo]; stopCounter: 0,
let renderElement = undefined;
switch(element ["#name"]){
case "media":
renderElement = <Media {...element.attributes} text={element.text} playlist={elemen|
break; localMediaItems: this.props.playlist.children.filter
case "sequence": const stopCounter = Gﬂ
renderElement = <Sequence {...element.attributes} text={element.text} playlist={ele if(element.attributes &
break; element.attributes.stopAtSubjectId !== unde
default: pubSub.publish('addGlobalMedialtem', element

renderElement = <p>You did not write the media or sequence tag. You wrote: {element| this.state = {
} stopCounter: stopCounter + 1
return(¥
div className="subject" id={this.props.playlist.attributes.id} return fa
{renderElement} b
return true;
1
}
this.stopCounter = this.stopCounter.bind(this

class Soprce extends Component { : 5 ey GREE (@ class Video extends Component {
constructor(props) { ST A © O constiuctor(props) {
supér(props); R super(props);)
confole.log('Source constructor', props.playlist); constructor(props) { congole. log('Video constructor', props.playlist);
} super(props);
this.handleEnd = this.handleEnd.bind(this)
R) his.state = ({ }
t {file, extensions, types} = this.props; secondsElapsed. %
startTime: parseFl handleEnd(event){
retuyn(duration: parseFlo console. log('video end', this);
irce src={file+'.'+extensions} type={types} h; onst videoReset = () => {
const video = this.props.mediatype.state.medialtemRef;
this.handleClick = t video. load();
this.handleScore = t video.play();
his.getCurrentTime };
this.props.mediatype.handleEnd(videoReset);

App.jsx src

Untitled-5 k t id="T\tro"

Untitled-4 media
= Untitled-3 video légdsTo="MenuDeBonteHen" repeat="true"

playlist.xml src M sourck extensions="mp4" file="videos/Intro"
> playlist_zaanse_sch... M rlay height="180px" leadsTo="MenuDeBonteHen" startTime="2" width="180px" x="1700px’ y="T%0px"
3 playlist_zaanse_schans.x... edin
<> index.html dist

Figure F.6: An example of how a XIMPEL playlist maps onto React components.

Figures

Figure F.7: A visual example of a near-miss. The lucky number 7 on the third slot machine column
went one place further than intended.

XXXI

([

&

Figures

C Master Thesis - Online LaTeX = x Thesis | Trello X | @ (77) Extra Credits - YouTube - X ' @3 (77) Education: 21st Century &= X
®

ecure ps://www.youtube.com/watch?v=0hoeAmgwvy —© o]
C as https:// tub / 2v=0hoeA Y * @ B z @ [s2) &

» YouTube ™"

Next episode AUTOPLAY
EXTRA CREDITS S8 E14
Education: 21st Century Skills - How Games Prepare You for Life - Extra Credits Education: EXTRA CREDITS S8 E15
Education: Agency - How
Games Empower Us - Extra
] Extra Credits

200,463 views

)

Figure F.8: An example of time scrubbing with a YouTube video. The red line could be dragged by
the mouse to earlier or later times and resume playback there. The video itself is taken from a show
called Extra Creditz, which talks about how game-design affects our lives for the better.

XXXII

Figures

karl popper,

SCIENCE AND

PSEUDOSCIENCE

IIIIIIIIlIIIIIIIIII IIIIIIIIIIIIIII|III|IIIIIIIIIIIII|III|IIIIIIIIIIIII|II

HISTORY OF
SCIENCE
PREVIEW _

CAL usm]
INTERFACES

MATHEMATICAL THINKING

#0_2) J
2®a

Figure F.9: An example of how local scrub bars look like. They are completely independent of each
other, and it is unknown to each scrub bar that there are other scrub bars and at what time they are
resuming playback. Image credit: thumbnails from the educational show Crash Course (on YouTube).

XXXIII

Figures

sssssssssssssssss

.....

I_ NATU RAi. lANGUAGE

PRO(ESSI G

i HLF’ & SPEECH INTERACTION

ALAN
TURING_. o

g E ;" allimmm

Figure F.10: An example of how a global scrub bar looks like. One scrub bar manipulates the time
for all media items in the presentation. Image credit: thumbnails from the educational show Crash
Course (on YouTube).

XXXIV

Figures

&Erm::ﬂ COURSE COMPUTER SCIEHCE /
[
<.

6

L 7 locke, berkeley &

EMPIRICISM

ckasa COURSE COMPUTER SCIEHCE
300 m °

[KEYBOARDS & COMMAND LINE
o
o

IHTERFACES
Oq sceecseee

Figure F.11: An example of how a global scrub bar looks like with local scrub bars. The global scrub
bar manipulates the time of the local scrub bars but the local scrub bars can also be manipulated
individually. Image credit: thumbnails from the educational show Crash Course (on YouTube).

XXXV

Figures

1 2 3
Media Media Media
: —_—— —_—0
Media Media Media Media Media Media
=0 — = . | —0 —_—
Media Media Media
- D @,
///”V\\\\ ///7”77 -

_/—\ y—— /1

Figure F.12: The global time scrub bar determines where all local scrub bars will resume playback.

XXXVI

Figures

1 2 3

Relotave Relotive
offeet offset

Media stall behind | Media 9ets stuck Media
globad offset , at the end

Media Media Media Media Media
= — | =c Oy et
Media Media Media

A
\\\ . -

N

>

ya

. A /N
//- \\\ - //’ \ L /

—

Figure F.13: The global time scrub bar determines the percentage offset that local scrub bars will
give to their position in time.

XXXVII

Figures

2 3
Media Cateh vp | Media Media
Mechantc
Media Media Media Media Media Media
Media Media Media
\\ / . / — \

Figure F.14: The local scrub bars catch up with the global time scrub bar, but only if the local scrub
bars are behind the global time scrub bar. There is also an inverse situation possible, here the local
scrub bars will catch up to the global time scrub bar if they are ahead. This inverse situation is not
shown in the figure. In the figure only one media item needs to catch up with its local scrub bar.

XXXVIII

Figures

SH® & MO =] oo%#) = Sun13ss Q @ =

@& Chrome File Edit View History Bookmarks People Window Help)
(] ® B Master Thesis - Online LaTeX X ' eiX Week 4 | Week 4 | CS50 Cour X @ CS50 Video X M.
- C' | @ Secure https://video.cs50.net/2017/fall/lectures/5?t=0m45s w o @ (I\E bl = ® s & @ @ B ® z P B & s (+)

= Apps |E!/ TheVault :: Posts hi... Portfolio crypto en... [Susan Piver: Buddh.. @ Amazon.co.uk: Prof.. [] http://localhost:80... & Matthijs Pontier [Computer Graphics... & Brain Workshop - a... » [5] Other Bookmarks

Rubber Duck Debugging

00:45 / 01:45:39
https://video.cs50.net/2017/fall/lectures/5?t=0m45s#

Figure F.15: An example of the CS50 player. In this screenshot the mouse hovered over an overlay
point called Rubber Duck Debugging.

XXXIX

Figures

De Zoeker
(subtree truncated)

Quiz
Het Jonge Schaap

Quiz
Het Jonge Schaap

Menu
Molen Het Jonge Schaap

Tour of
Molen Het Jonge Schaap

Walk to
Het Jonge Schaap

Tour of windmill
De Bonte Hen

Right answer Correct answer information

Figure F.16: In this figure a part of the full interaction graph of the XIMPEL presentation of the
Zaanse Schans is shown. Users who would like to scrub between subjects could see a graph like this,
and click on any part of the edge to indicate how far they want to start within a subject. A graph
like this could be shown in the upper right corner by clicking on a button, for example. What is not
shown in this image is that overlays could be displayed on any part of the edge as well for additional
scrubbing information. As one could imagine, the figure would become too crowded.

XL

Tables

Table F.1: Summary XIMPEL JS versus XIMPEL React in XML-parsing and storing it in the
in-memory configuration object.

XIMPEL Module LoC XJS LoC XR Time XJS Time XR
Parser 812 15 N/A 8 hours?®
In-memory configuration object 366 0 N/A ob

Table Notes

& debugging in Webpack is tough, hence 8 hours for 15 lines of code.

b0 lines of code for in-memory configuration object for XIMPEL React, because
they are handled by props which is a feature of the library.

Acronyms

LoC: Lines of Code
XJS: XIMPEL JS
XR: XIMPEL React
N/A: Not Available

XLI

Tables

Table F.2: Comparison between all XIMPEL JS files and all XIMPEL React components.

XIMPEL JS XIMPEL React Counterpart

Analytics.js Analytics.js (same library)

MediaTypeRegistration.js React props and error message handling is designed away
Models.js React props and Overlay.score

Parser.js Webpack XML parser

PubSub.js PubSub.js (another library with the same name)
QuestionManager.js Designed Away

XimpelApp.js Handled by Webpack compilation? playback functionalities are designed away
polyfills.js Cross-browser compatibility is done by React
ximpel.js Partially React and partially designed away

Audio.js Audio

Filler.js Filler

Iframe.js Iframe

Image.js Image

MediaType.js MediaType

Message.js Message

Terminal.js Terminal

TextBlock.js TextBlock

Video.js Video

YouTube.js YouTube

MediaPlayer.js MediaType

ParallelPlayer.js Media

Player.js Playlist, Rule and Subject

SequencePlayer.js Sequence

OverlayView.js Overlay

QuestionView.js Designed Away

View.js Not needed because QuestoinView.js is designed away
XimpelAppView.js Designed Away

2 It does mean we cannot retrieve the playlist from a server, it needs to be locally included.

XLII

	Preface
	A small guide on the reference list and footnotes
	Acknowledgements
	Introduction
	What is XIMPEL?
	Thesis structure
	A brief Amsterdam-centric history of hypermedia
	In the beginning
	What is hypermedia
	The Amsterdam Hypermedia Model
	Components
	Time
	Channels
	Links

	SMIL
	XIMPEL
	How XIMPEL works
	Now

	Explorations

	Exploration 1: creating a command-line tutorial in XIMPEL
	Extending XIMPEL to create a command-line tutorial
	Architecture of the command-line media type
	When is something hypermedia and when is it not?
	Conclusion

	Exploration 2: extending XIMPEL for playing media types concurrently
	Architecture of parallel playback
	Implementation of parallel playback
	The parallel player and parsing
	The in-memory configuration of the parallel player
	The parallel player itself
	Testing and debugging the parallel player

	Conclusion

	Exploration 3: assessing the benefits for porting XIMPEL to React
	Webpack XML parser setup
	Implementation methodology of the second and third attempt
	Designing XIMPEL React
	Architecture
	Improvements compared to second attempt
	XIMPEL tags mapped to React component and the link to compiler construction
	Component Rules
	Ximpel
	Playlist
	Subject
	Media
	Sequence
	MediaType
	Media Types
	Overlay
	Rule

	Beyond the component rules
	Data flow within XIMPEL React

	Conclusion
	Unexpected advantages and disadvantages
	Evaluating the expected advantages
	Concluding the evaluation
	Architectural similarities between XIMPEL JS and XIMPEL React
	Features that still need to be implemented for feature parity
	In closing

	Future work

	Exploration 4: creating the necessary requirements to measure the frustration of users in XIMPEL
	Justification for creating a logging framework
	What is frustration
	Some nuances regarding frustration

	Capturing data for analyzing frustration
	Frustration measures: clicks, mouse speed, user XIMPEL subject history and facial expressions
	Software architecture and implementation for capturing data

	Classifying the measures as frustration
	Related Literature
	Proposed approach for classifying frustration in XIMPEL
	Facial expressions
	Detecting frustration through CLMtrackr
	Detecting the facial expression of frustration
	Mouse clicks and mouse moves
	User trails and time between subjects
	Conclusion

	Future work
	Detecting frustration directly
	Researching the associations between mouse moves, mouse clicks and facial expressions
	Improving facial expression classification

	Exploration 5: exploring what time scrubbing mechanisms XIMPEL needs
	Time scrubbing with videos
	Related work
	Within subject time scrubbing in XIMPEL
	Time scrubbing: the difficulties introduced by the parallel player
	Time scrubbing: the difficulties introduced by users having choice

	Between subject time scrubbing in XIMPEL
	Interaction of within and between subject time scrubbing
	Conclusion

	Exploration 6: extending the YouTube media type for media item subject switch survival
	Discussion
	Future Work

	Postface
	Exploration 7: Hypermedia and Gaming
	The computationality of XIMPEL
	Conclusion
	Future Work

	LaTeX Questions on tex.stackexchange.com
	Appendix Exploration 2: XIMPEL playlist that is possible with the ParallelPlayer
	Appendix Exploration 3 part 1: The first time I tried to port XIMPEL to React and failed
	Methodology and implementation
	Conclusion

	Exploration 3 part 2: assessing the benefits for porting XIMPEL to React (successfully porting it to React)
	Webpack XML parser setup
	Architecture and implementation
	SubjectRenderer: the one component to render everything else
	Creation of React Elements
	Difference between media types in JS XIMPEL and XIMPEL React
	Difficulties encountered with React elements and React components
	Overlays and scoring
	Data flow within XIMPEL React
	Conclusion

	Appendix Exploration 6: the code needed in YouTube.js for a partial subject change

